
Journal of Global Change Data & Discovery. 2024, 8(2): 210-221
www.geodoi.ac.cn 

©2024 GCdataPR 

Global Change Research Data Publishing & Repository

 

                    

Received: 06-03-2024; Accepted: 18-06-2024; Published: 25-06-2024 
Foundations: The National Social Science Fund of China (23TJA00092); Northeast Geological Science and Technology 

Innovation Center’s Fund Project (QCJJ2022-26) 
*Corresponding Author: Gang, S., Key Laboratory of Regional Environment Eco-Remediation (Shenyang University), 

Ministry of Education; Key Laboratory of Black Soil Evolution and Ecological Effect, Liaon-

ing Province, gang_shuang@163.com 
Citation: Zhou, Y. L., Gang, S., Xu, Y. T., et al. Comparison of spatialization process of carbon emissions [J]. Journal of 

Global Change Data & Discovery, 2024, 8(2): 210–221. https://doi.org/10.3974/geodp.2024.02.12. 
https://cstr.escience.org.cn/CSTR:20146.14.2024.02.12. 

 

 

Comparison of Spatialization Process of  
Carbon Emissions  

Zhou, Y. L.1  Gang, S.1,2*  Xu, Y. T.3,4  Li, J. Z.5  Xiao, X.1  Xue, B.3 

1. Key Laboratory of Regional Environment and Eco-Remediation (Shenyang University), Ministry of Education, 
Shenyang 110044, China; 
2. Key Laboratory of Black Soil Evolution and Ecological Effect, Liaoning Province, Shenyang 110034, China; 
3. Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 
4. University of Chinese Academy of Sciences, Beijing 100049, China; 
5. School of city and environment, Xuchang University, Xuchang 461000, China 

 

Abstract: With the goals of carbon peaking and carbon neutrality, carbon emissions have gradu-
ally become a key area of research in environmental science and are of great importance for cli-
mate change and sustainable development. Spatialization of carbon data can visually show the 
differences in emissions between industries and regions. High spatio-temporal resolution data can 
be used to build a long-time series atlas of carbon emissions, which provides data support for 
carbon emission monitoring and carbon cycle research. Therefore, starting from the data form and 
response scale, this paper explains the spatialization process of carbon emissions based on 
nighttime lighting (NTL) and social statistics data, summarizes the different spatialization methods 
in different scenarios of carbon emissions change, and analyzes how to spatially visualize carbon 
emissions at different scales from the perspective of country, province and city. Finally, it discusses 
the problems encountered in this process and makes suggestions that provide a reference for the 
efficient implementation of carbon reduction policies. 
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1 Introduction 

Global climate change has become one of the greatest challenges to human development. 
The Paris Agreement[1], as a major commitment by countries to address climate change, has 
become a critical component in building a community with a shared future for humanity[2]. 
Therefore, accurate measurement of carbon emissions in the research sector will contribute 
to the implementation of carbon peaking and carbon neutrality goals. As the world’s largest 
carbon emitter[3], China’s carbon emissions come mainly from sectors such as electricity[4], 
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transportation[5], agriculture[6], construction[7] and industrial production[8]. Carbon data can 
be used to measure greenhouse gases, such as carbon dioxide, produced by individuals,  
organisations, or regions during production and consumption processes. Different industries 
have their corresponding carbon emissions data, and different regional scales also have cor-
responding carbon data, such as national carbon data list, provincial carbon data list, city 
carbon data list, and county carbon data list. Different regional scales also have correspond-
ing carbon data, such as national provincial city and county carbon data. Spatialization of 
carbon emissions data can visually display the differences in carbon emissions across dif-
ferent geographical areas[9], spatial scales[10,11] and industries[12], making it easier for re-
searchers to answer questions from a geographical perspective, such as which regions have 
the most effective carbon emission reduction and which industries have urgent carbon re-
duction needs, which is also integrated with multi-source data such as GDP, POI, population, 
land use, and transportation networks. The spatialization process also involves data trans-
formation issues, such as refining large-scale data to small-scale areas and simulating 
area-source carbon emissions from point-source carbon data. Clarifying the spatialization 
mechanism of carbon data will help to formulate feasible carbon emission reduction plans. 
Therefore, this paper focuses on the spatialization of carbon emissions data, systematically 
reviews the relevant literature on carbon data processing, summaries the data processing 
scenarios and corresponding methods involved, and compares carbon emissions data 
processing in cross-scale application contexts from both technical and application perspec-
tives, so as to provide a reference for the related research involving carbon data processing 
research. 

2 Carbon Emission Data 

Carbon emissions are often used as a shorthand for greenhouse gas emissions, and this paper 
focuses on carbon dioxide emissions. From a societal perspective, carbon emissions data can 
be obtained from public government data platform, research institutions and corporate or-
ganizations. Carbon data includes emission volumes, carbon emission intensity and emission 
inventories. Emissions data can describe the carbon emissions generated by a certain region, 
industry or activity, while carbon intensity measures emissions per unit of GDP. Organiza-
tions calculate their direct and indirect emissions from different stages of production and 
daily activities to create a carbon inventory. 

From a geoscience perspectives, carbon data collection can be broadly divided into satel-
lite remote sensing and social statistics[13]. Remote sensing satellites provide data on the 
global distribution data greenhouse gases and terrestrial carbon , with advantages such as 
stability, wide spatial coverage, and cost-effectiveness. Current remote sensing satellites 
focusing on carbon gas monitoring include OCO-2, GOSAT, and TanSat. However, these 
data can be influenced by atmospheric circulation, leading to significant errors when ana-
lyzing carbon emissions at smaller scales, such as counties or villages. Research by scholars 
like Elvidge[14] and Doll[15] has shown a significant correlation between nighttime light in-
tensity and carbon emissions. Commonly used nighttime light remote sensing satellites in-
clude the U.S. Soumi NPP and DMSP-OLS and the Luojia-1 satellite led by a team from 
Wuhan University, as shown in Table 1. As noted by Yu[16], DMSP-OLS data suffer from 
saturation problems, while NPP-VIIRS provides higher resolution and better imaging. For 
small-scale studies, nighttime light data from Luojia-1 offers advantages over the other sa-
tellites and correlates well with carbon emissions[17]. Nighttime light data provide research-
ers with comprehensive and continuous carbon emission data, but factors such as regional 
development, population density, and industrial park distribution can affect the accuracy of 
carbon emissions derived from these data. Therefore, nighttime light data is often used in 
conjunction with other data sources. Social statistical data on carbon emissions can be used 
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for large-scale simulations of regional carbon emissions. In GIS, these data can be 
represented as point data, line data, or polygon data[18]. 

 

Table 1  Commonly used nighttime light remote sensing satellites 

Satellite name Country
Acquisi-

tion 
Pathway

Launch year Data products
Spatial 
resol-
ution

Data characteristics 

DMSP-OLS USA NOAA DMSP 5D-3F15 1999 Annual com-
posite stable 
light data 
(1992–2013)

–1000 m Widely used, the resulting 
product remains one of the most 
widely applied nighttime light 
remote sensing datasets to date. 
However, affected by sensor 
limitations, the maximum 
brightness of the light signal is 
capped at 63, leading to data 
saturation issues. This poses 
challenges for long-term series 
analysis and issues like the 
“blooming effect” on the light 
boundary 

DMSP 5D-3F16 2001

DMSP 5D-3F17 2006

DMSP 5D-3F18 2009

NPP-VIIRS USA NOAA 2011 Annual com-
posite data 
(2015, 2016)

–500 m Compared to DMSP-OLS, it 
offers higher spatial resolution 
and better imaging effects, 
which are beneficial for study-
ing finer regional scales. How-
ever, the short temporal resolu-
tion hasn’t fully addressed 
issues like removing abnormal 
light signals and background 
noise 

Monthly 
composite 
data (April 
2012 to 
present) 
Nighttime 
original data 
(January 19, 
2012 to 
present) 

–750 m

Luojia-1 China Luojia-1 
official 
website

2018 Original data 
(produced 
from June 
2018) 

–130 m Higher spatial resolution than 
DMSP-OLS and NPP-VIIRS. 
Ideally, it can complete global 
nighttime light remote sensing 
data collection within 15 days 

3 Spatial Processing of Carbon Emission Data 

The study of carbon emissions and its temporal and spatial changes is of great significance 
for China’s development. The spatialization of carbon emissions data can be seen as a 
process of making abstract data more concrete. Whether using remote sensing data to infer 
regional carbon emissions or simulating them based on point, line, and polygon data, spatial 
proxy parameters are often selected to better achieve data spatialization. In this process, 
classic geographic theories such as Tobler’s First Law of Geography, spatial spillover effects, 
and spatial interpolation are widely used to help explain the spatio-temporal variations in 
carbon emission intensity.  

3.1 Carbon Emission Spatialization Analysis Based on Nighttime Light Data 

Nighttime light remote sensing satellites can detect urban lighting. Shi et al.[19] noted that 
the pixel DN values of nighttime light data are positively correlated with CO2 emissions at 
the corresponding locations, so nighttime light data can evaluate regional carbon emissions 
at the grid level. Different satellites also have their own advantages. For example, 
NPP-VIIRS offers higher resolution and better timeliness than DMSP-OLS data, but 
DMSP-OLS data have a longer time span, allowing for deeper time-series research. The 
DMSP-OLS-like nighttime light remote sensing dataset for China is published by Shi’s team 
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from Southwest University, and its accuracy in evaluating social indicators has been vali-
dated as superior to these two types of data[20]. In practical applications of carbon emission 
spatialization, nighttime light data are often combined with energy data and population den-
sity data. Zhang et al.[17] spatialized carbon emissions in Xi’an using nighttime light data 
and energy statistics as the basis, with population data as a weighting factor. Wei et al.[21] 
used nighttime light data and population data to simulate carbon emissions across China. 

The general process of spatialising carbon emissions based on nighttime light data in-
cludes the following steps: (a) obtaining and pre-processing nighttime light data for the 
study area according to the research scale; (b) integrating population density, energy con-
sumption, and land use data to build a model that produces spatialized carbon emissions; (c) 
data validation; (d) result analysis. In step (c), nighttime light data and carbon emission sta-
tistics are often used to construct estimation models, and the model with the best fit is se-
lected to establish the relationship between the two. Alternatively, the Root Mean Square 
Error (RMSE) and Mean Relative Error (MRE) can be obtained by comparing the estimated 
carbon emissions for a particular industry with the total carbon emissions of that industry, 
thus assessing data accuracy and exploring regional carbon emissions. There are also stu-
dies[22] that verify the accuracy of the data by comparing it with the carbon emissions as-
signed by the International Carbon Database. Related research[23] shows that when estab-
lishing a mathematical relationship between energy consumption and nighttime light, linear 
relationships have a relatively optimal fit. When constructing models for estimating poly-
nomial functions, higher-order polynomials tend to provide better fits[17]. The R2 values of 
the fitting formulae often range from 0.6 to 1[24–27], or p < 0.01[28], indicating good accuracy 
of the data results. 

3.2 Carbon Emission Spatialization Analysis Based on Social Statistics Data 

Spatial interpolation can be applied to original carbon emission point data obtained from 
social statistics. Combined with methods such as cluster analysis and hot spot analysis, this 
approach helps to identify high and low carbon emission areas and understand the spatial 
distribution characteristics and driving factors of carbon emissions. Spatial interpolation 
methods include inverse distance weighting (IDW), Thiessen polygons, trend surface, and 
kriging. Kriging interpolation is often used to process carbon data to smallscales such as 
counties, while inverse distance weighting is commonly used for provincial and city data, as 
shown in Table 2. It should be noted that inverse distance weighting is very sensitive to the 
choice of weighting function, and if the data are unevenly distributed, abnormal results may 
occur. The interpolation result is sensitive to extreme values, and the variance of the pre-
dicted value cannot be estimated. Therefore, the interpolation effect of this method is better 
when the known points are evenly distributed. Kriging, a geostatistical method, calculates 
the weights of each measured point through the semi-variogram function, allowing for ad-
justable model parameters that can be set according to the nature of the regionalized va-
riables. At the same time, the error and accuracy of the results can be dictated, which is 
suitable for the factors with correlation of the regionalized variables. In reviewing the lite-
rature, the use of traditional simple interpolation methods is more common in domestic stu-
dies than in international research. Some scholars believe that relying solely on traditional 
interpolation methods to obtain grids may lead to large errors. Therefore, they modify the 
parameters of traditional methods[41] or establish new models[38] to convert point data into 
area data. Cross-validation of results obtained by different methods in different study areas 
is necessary to ensure accuracy. 

When collecting raw carbon emissions data based on social statistics, researchers often 
use either a top-down or bottom-up approach to construct spatialized carbon emissions da-
tasets, as shown in Figure 1. In the former, the total carbon emissions are divided into grid 
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units according to the weight ratio of population, regional development level and other fac-
tors. This method has a wide range of applications and is of great value for regions with few 
carbon emissions data (Figure 2a). The latter is a grid construction method integrated 

 

Table 2  Application of interpolation methods in domestic and international data processing 

Reference 
Research 
area 

Research 
method 

Content 

Yan (2018)[29] Huailai 
County 

Kriging Spatial distribution of land carbon emissions in Huailai 
County 

Su et al. (2011)[30] Shaanxi 
Province 

IDW Analyzed the spatial differences and variations in carbon 
emissions across different regions in Shaanxi Province 

Guo et al. (2016) [31] Jiangsu 
Province 

Kriging Interpolated the total carbon emissions of each county 

Kong (2018)[32] Lanzhou 
City 

IDW Spatial distribution of industrial carbon emissions in Lanzhou 
City 

Yuan et al.(2021)[33] Jinan City Kriging Spatial distribution characteristics of transportation carbon 
emissions in Jinan City 

Rong et al. (2018)[34] Kaifeng City IDW Visualization of the spatial distribution of daily carbon emis-
sions in Kaifeng City 

Wu (2016)[35] China IDW Modeled the spatial distribution of total carbon emissions in 
China from 1990 to 2012 

Huang et al. (2015)[36] Wuhan City Kriging Trend prediction of household carbon emissions in Wuhan 
City 

Mohit et al. (2006)[37] India G-SMILE A statistical model using grid data to achieve the required 
resolution for carbon emission distribution 

Sanayanbi et al. (2017)[38] India IDW and 
Kriging 

Studied the spatial distribution of ET0 in India, comparing the 
precision of inverse distance weighting with Kriging methods 

Vahid et al. (2024)[39] Australia Linear In-
terpolation 

Explored the precision of carbon emission distribution, using 
this method to supplement missing data for carbon emission 
estimation 

Marko et al. (2023)[40] Belgrade Bilinear 
Interpolation 

Established a bilinear interpolation model for estimating 
vehicle tailpipe emissions 

 
with the idea of aggregation. The principle is to collect carbon emission information of dif-
ferent departments in the research area, grid them and then overlap them to form a compre-
hensive grid map, as shown in Figure 2. Compared with the former approach, the bottom-up 
method is more complex and requires more raw data to support carbon emission calculations 
for different sectors, but it provides higher accuracy with relatively smaller errors[43]. 

 

 
 

Figure 1  Technical road map of top-down and bottom-up 
 

The spatial grid method can further refine the spatial distribution of carbon emissions data, 
allowing visualization at specific spatial resolutions and creating a spatially continuous carbon 
emissions dataset. This allows more detailed analysis of regional carbon emission patterns. 
Spatially allocating carbon emissions in small areas requires taking into account various fac-
tors such as population density, traffic flow and land use , and setting appropriate weighting 
coefficients to simulate a carbon emission distribution grid that closely reflects reality. This 
process can take a top-down approach (Figure 2b), where carbon emissions data are distributed 
by downscaling to produce spatial distribution maps of regional energy consumption. This 
method typically integrates GIS with one or more cross-referenced datasets, such as POI , 
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population density, traffic flow, land 
use, and nighttime light data, to allo-
cate emissions to grids. For example, 
Wang et al.[44] utilized a series of spa-
tial proxy data to develop a gridded 
inventory that reflects the spatial pat-
terns of carbon emissions in Hangzhou. 

3.3 Differences and Connections 
between Spatialization of Carbon 
Emissions Based on Nighttime Light 
Data and Social Statistics Data 

The differences between the two are 
as follows: (a) In terms of data 
sources, nighttime light data is pri-
marily obtained through remote sens-
ing techniques that capture surface 
illumination at night, while social sta-
tistics data is derived from so-
cio-economic indicators. (b) The for-
mer performs better in areas with 
dense energy consumption and eco-
nomic activities, while the latter has more potential to reflect carbon emissions in rural and 
other less developed regions. (c) Nighttime light data can help researchers quickly identify 
areas with a relatively higher intensity of economic activity, whereas social statistics data 
focus more on identifying specific emission sources.  

4 Application Scenarios of Carbon Emission Spatialization from a Technical 
Perspective 

In economic research, line or bar graphs are often used to present the temporal and spatial 
trends of regional carbon emissions[45]. However, from a geoscientific perspective, it is 
somewhat counterintuitive to represent changes in carbon emissions only with numerical 
values, and geographical base maps are usually used to depict specific information such as 
changes in carbon emissions. Scholars, at home and abroad have conducted extensive re-
search on the spatial differentiation of carbon emissions, influencing factors, change me-
chanisms, and driving factors at different scales, such as national, provincial and regional, 
using nighttime light data. 

4.1 Research Subjects 

Estimation of land use carbon emissions typically involves socio-economic data, fossil fuel 
consumption, remote sensing data of land cover and nighttime light DN values, combined 
with spatial statistical analysis, geographic detectors, or geographically weighted regression 
methods. For example, Niu et al.[46] studied carbon emissions from land use and influencing 
factors in the Changsha Zhuzhou Xiangtan area, using nighttime light brightness values and 
energy consumption to build equations with an R2 greater than 0.85. Su et al.[47] found a 
strong correlation between carbon emissions from energy consumption and nighttime light 
index in Shanxi Province, with an R2 of 0.991,4. Grid methods are often used to divide re-
gions, which helps to highlight regional differences in carbon emissions. Wang et al.[48] used 
the area of different land types multiplied by corresponding carbon emission coefficients to 

 
 

Figure 2  Spatialization of carbon emissions based on 
nighttime light data and social statistics data 
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construct a regional grid and found an increasing trend in carbon emissions in the Nansi 
Lake Basin. Some studies also incorporate time series data to investigate the temporal and 
spatial differentiation within regions. For instance, Deng et al.[49] used remote sensing im-
agery and socio-economic data from different years to reveal the temporal and spatial evolu-
tion and driving factors of carbon emissions from land use in Wuhan. Liu et al.[50] constructed 
a fitting model based on nighttime light data and statistical data from 2012 to 2021 to depict 
the spatio-temporal evolution of carbon emissions in seven eastern provinces and cities. In 
short, when exploring carbon emissions from land use, a fitting equation is often constructed 
to reflect the fitting degree between remote sensing data and regional carbon emissions, 
usually R2 > 0.8. The accuracy of the data used in this study is lower than that use in the study 
of changes in carbon emissions from land use within provinces, cities or counties. The former 
usually gives different colors to different large areas in the form of spatial results, while the 
latter can reflect regional emission hot spots more finely. 

The agriculture, energy and transport sectors have made important contributions to  
China’s rapid economic development,but are also significant sources of carbon dioxide 
emissions. Agricultural research often uses data on crop area and crop type to estimate car-
bon emission intensity. For example, Cui et al.[51] used crop planting area data and explora-
tory spatial data analysis to visualize agricultural carbon emissions in Hebei Province. In the 
energy sector, the focus is on the temporal and spatial evolution characteristics. Hao et al.[52] 

simulated energy carbon emissions in combination with nighttime lighting data and statistic-
al data and found that carbon emissions in most regions changed little. In the transportation 
sector, studies have examined carbon emission distribution patterns based on different road 
networks, such as Dai et al.[53] who visualized carbon emissions in Shandong Province’s ex-
pressway network. Others have studied carbon emissions from motor vehicles, such as Wang 
et al.[54] who obtained a high accurate inventory of vehicle carbon emissions based on traffic 
statistics. Different sectors have different data characteristics. Spatialization research in the 
agricultural sector and data from the energy sector are often area-based; data from the 
transport sector may be tripe or area-based, depending on the environment, specifications, 
and power sources of the vehicles used.  

4.2 Spatial Scope 

With the continuous deepening of research, carbon emission grid data has evolved from an-
nual data to near-real-time daily data[55], and the spatial resolution has improved from 1º × 
1º[56] and 0.25º × 0.25º resolution datasets to 0.1º × 0.1º grids[57]. In studies investigating the 
spatial distribution of national carbon emissions, existing research often uses provinces as 
the basic unit, starting from a national perspective to study the spatial distribution of carbon 
emissions in the energy consumption sector. Nighttime light data and population data are 
typically used as a basis, and spatial interpolation methods are employed to fill missing val-
ues, distributing carbon emissions to grid scales[58]. Wang[59] integrated population, GDP, and 
nighttime light data, combined with correlation and regression analysis, to construct a 
cross-scale spatial model of China's carbon emissions. At the provincial scale, counties are 
often used as the smallest unit to study the spatial patterns of carbon emissions. Studies also 
construct highly fitting equations to reveal the spatial variation patterns of carbon emissions 
within regions. Gu et al.[60] constructed a function representing energy consumption carbon 
emissions based on nighttime light pixel values, and then used emission inventories to cal-
culate and simulate the energy consumption carbon emissions in Henan Province. Xie et 
al.[61] constructed a spatial distribution map of greenhouse gas emissions on a 200 m × 200 
m grid and explored the differences in greenhouse gas emission levels in the study area. 
Current regional-scale research mainly involves regions such as the Lanxi urban agglomera-
tion[62], the Harbin Changcheng urban agglomeration[63], and the Yangtze River Economic 
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Belt[64]. Yang et al.[65] used a bottom-up method to calculate pollutant emissions and show 
the spatial distribution of air pollutants in the Pearl River Delta region. Research institutes at 
city level require higher data accuracy and often use social statistical data such as population 
density, POI, and GDP, as well as related remote sensing data. Combined with carbon emis-
sion measurement methods such as “top-down” and “bottom-up”, they rely on GIS platforms 
to obtain spatial distribution of carbon emissions in different industry backgrounds. For in-
stance, Li et al.[66] proposed a method for establishing a high spatial resolution carbon emis-
sion inventory at the city level, and established a 1 km × 1 km carbon emission inventory for 
Yingkou City. 

Both nighttime light-based and social statistics-based methods can spatialize carbon 
emission intensity at national, provincial, and municipal scales. When selecting data, it is 
important to clarify the research scope and topic in order to select appropriate resolution 
data. Large spatial resolutions are often required to study macroscopic distributional charac-
teristics. When studying emission details at the city or smaller scale, higher resolution data 
are usually selected to construct grids of sizes such as 1km × 1km or 200m × 200m. If the 
original data resolution is too low to reflect differences in distribution of carbon emissions 
between regions, top-down methods based on social statistics can be used to achieve more 
accurate results. 

5 Discussion 

5.1 Suggestions 

First, there is often a lack of validation accuracy in regression modelling. When studying 
regional carbon emissions based on nighttime light data, a common approach is to estimate 
emissions using regression modelling. However, many researchers overlook the validation 
of regression accuracy when analyzing spatial and temporal scales. Simple regression only 
quantifies the relationship between data on temporal or spatial scales, without considering 
the combined effects of multiple factors. The scientific community generally agrees that us-
ing statistical data to estimate carbon emissions is more comprehensive. Some scientists 
have also questioned the results of studies that rely solely on nighttime light data for 
small-scale regions[52]. Meanwhile, other research suggests that constructing models to re-
verse-engineer the relationship between light intensity and carbon emissions is a crucial di-
rection for future carbon accounting methods[67]. Therefore, models that couple nighttime 
light with other factors should be developed and validated by comparison. 

Second, the top-down approach often lacks spatial information in the carbon emissions 
data used. When grid-mapping carbon emissions for large regions, data for smaller areas 
may be overly smoothed, failing to reflect local variations in emissions. Conversely, while 
the bottom-up approach offers higher accuracy, it requires more extensive raw data accumu-
lation. In cases where statistical data are incomplete or imprecise, combining both top-down 
and bottom-up methods, supplemented by spatial interpolation, can adjust the values within 
spatial grids, resulting in more accurate carbon emission maps. 

Thirdly, current research often overlooks the differences in the principles behind different 
spatial interpolation methods and directly chooses a particular method to simulate missing 
data. However, choosing the wrong interpolation method in different research contexts can 
lead to discrepancies between predicted and actual values, resulting in significant errors in 
simulated spatial carbon emission results. This discrepancy is particularly pronounced when 
studying the spatial distribution of carbon emissions at the county level or smaller scales. 
Therefore, in such cases, the choice of spatial interpolation methods is crucial, and mul-
ti-source data should be integrated with cross-validation to achieve the highest degree of fit 
for spatial prediction surfaces of carbon emissions. 
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Finally, carbon dioxide emissions and transfers are strongly influenced by spatial and 
geographical factors. As for different issues, it is essential to consider the impact of hu-
man-environment relationships, geographical elements, terrain or climatic conditions on the 
study factors. Investigating the effects of different factors on the transfer of carbon emission 
and constructing targeted spatial distribution models will help to simulate high-precision 
real-time monitoring networks for carbon emissions, improve the understanding and man-
agement of air quality issues, and promote air pollution control and emission reduction 
measures. When interpolating carbon emissions at small scales, different emission scenarios 
should be considered to minimize errors due to differences in building types. At larger scales, 
integration of data from multiple sources can reduce errors and uncertainties caused by low 
resolution. 

5.2 Outlook 

First, more research should be done on small or micro-scale carbon emissions. Compared to 
larger regions, smaller scales such as villages and campuses have greater potential to reduce 
emissions and can serve as pioneers in exploring innovative emission reduction technologies 
and models. Therefore, future research should explore the differences in the distribution of 
carbon emissions within small scales and between regions. An accurate understanding of the 
spatial flow of carbon emissions can enable more targeted point-to-point emission reduction 
strategies and provide scientific evidence for governments to formulate more targeted reduc-
tion policies based on local conditions. 

Second, the presentation of carbon emissions on maps needs to be refined. Most current 
studies use administrative regions at the provincial or municipal level as the unit of analysis, 
with entire regions being coloured according to sectoral or industrial emissions. However, 
this approach does not effectively represent the specific locations of industries or sectors 
within the administrative region. Grid-based approaches can more accurately capture the 
spatial distribution and trends of carbon emissions, highlighting the gradient changes in 
emission intensity within the area. However, few studies have used this refined grid-based 
approach. Therefore, future research on regional carbon emissions should place greater em-
phasis on the detailed distribution of study objects on maps and the detailed representation 
of how emissions decrease with increasing distance from the source. 
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