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Abstract: The Sentinel-2 canopy chlorophyll content (CCC) validation dataset of winter 
wheat in Yucheng, Shandong of China consists of two parts: Canopy Chlorophyll Content 
observed in field (CCCField = LAI  LCC) for 107 sample plots were observed in Yucheng, 
Shandong Province from May 9 to 16, 2020, including LAI and SPAD; and Canopy Chlorophyll 
Content retrieved from Sentinel-2 satellite (CCCSentinel) with a spatial resolution of 10 m. Five 
correlation analyses of CCCField and CCCSentinel shows that the coefficient of determination (R2) 
ranges from 0.889,9 to 0.928,0, with a RMSE of 29.267, which indicates that CCCSentinel can 
explain at least 88.99% of the CCCField variation during the period from late of April to early May. 
The dataset is archived in .shp, .kmz, .tif and .xlsx data formats, and consists of 18 data files with 
data size of 215 MB (compressed into three files with 160 MB). 
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1 Introduction 

Chlorophyll is not only the basis of photosynthesis[1], but also the close relationship with 
nitrogen level. It can be measured relatively easier, and can be used as a proxy for nitrogen 
level[2–4]. Chlorophyll content can be expressed by leaf chlorophyll content (LCC) or canopy 
chlorophyll content (CCC). The measurement methods of chlorophyll content can be divided 
into ground measurement and remote sensing inversion. The ground measurement of 
chlorophyll includes laboratory analysis, ground spectrum measurement, leaf color card and 
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so on[5,6]. The ground method is suitable for measuring chlorophyll content in a small 
range, and the “mass method” is used for measuring chlorophyll content in many early 
studies, which cannot be used for remote sensing validation[7,8]. Therefore, some scholars 
call for using the “area method” in the future measurement of chlorophyll content [2,9,10]. 

In principle, the method of retrieving chlorophyll content by remote sensing can be 
divided into statistical method and physical mechanism method[11]. The parameters in the 
statistical method include not only the common vegetation index, but also the parameters 
obtained through the specific spectral interval, such as the location of the red edge, the 
parameters based on synthesis, derivative, and continuum removal[12–18]. The physical 
mechanism method assumes that there is a causal relationship between the remote sensing 
data and chlorophyll content. The physical relationship can be used to build a radioactive 
transfer model (RTM), and the “look-up table (LUT)” method can be used to retrieve 
chlorophyll content[19,20]. In theory, physical mechanism method has higher “portability” 
than statistical method, but its performance still needs to be verified. For instance, some 
research shows that physical mechanism method is also affected by seasonality [20] and 
vegetation type[21–23]. 

At present, there are three chlorophyll content products retrieved by remote sensing on 
the global scale: (1) the MERIS-LCC product (20022012) was developed by University of 
Toronto, Canada, 300 m, weekly[24]; (2) MODIS-LCC product, 500m-8d, was developed by 
Chinese scholars[25]; (3) Sentinel-CCC product is developed by ESA, but it requires users to 
download Sentinel-2 L2A data and process L2A into Sentinel-CCC using SNAP-Biophysical 
Model, Sentinel-CCC product can be as fine as 10 m with 5-day temporal resolution[26]. 

Due to the low spatial resolution (300500 m) of MERIS and MODIS LCC products, it is 
difficult to obtain reliable ground validation data for CCC with 300500 m resolution. 
However, Sentinel-CCC has high spatial resolution (up to 10 m), which can be validated 
with field survey relatively easier. If 10 m Sentinel-CCC can be validated to meet some 
criteria with field observation, it may be used to further verify the CCC of 300500 m 
resolution. This dataset[27] includes the relative chlorophyll index (SPAD) and LAI of 107 
winter wheat plots in Yucheng, Shandong province in May 2020, and the model converted 
from SPAD to LCC. The spatial resolution of the plots is 10 m, which can be used to verify 
chlorophyll products with lower spatial resolution after up scaling. 

2 Metadata of the Dataset  

Metadata of the Sentinel-2 canopy chlorophyll content (CCC) validation dataset of winter 
wheat in Yucheng, Shandong of China[27] is summarized in Table 1. 

3 Methodology 

3.1 Study Area 

The sampling area is located in Yucheng county, Shandong province, which belongs to the 
alluvial plain of the lower Yellow River. The altitude range is 17.526.1 m, with small 
fluctuation. The annual average temperature is 13.3 ºC, the annual average precipitation is 
555.5 mm, the annual average evaporation is 1,884.8 mm, the frost free period is 202 days, 
and the annual sunshine is 2,546.2 hours. Winter wheat and maize rotation is the main way 
of land use, in which winter wheat was sown in October of the previous year and harvested 
in early June of the present year. The field observation time is from May 9 to 16, 2020 when 
winter wheat is in the filling stage. 
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Table 1  Metadata summary of the Sentinel-2 canopy chlorophyll content (CCC) validation dataset of 
winter wheat in Yucheng, Shandong of China 

Items Descriptions 

Dataset full name Sentinel-2 canopy chlorophyll content (CCC) validation dataset of winter wheat in Yucheng, 
Shandong of China 

Dataset short name CCC_WinterWheat_Yucheng_2020 

Authors Wang, Z. X. L-5255-2016, Institute of Geographic Sciences and Natural Resources Research, 
Chinese Academy of Sciences, wangzx@igsnrr.ac.cn 
Li, F. L-3424-2018, Institute of Geographic Sciences and Natural Resources Research, Chinese 
Academy of Sciences, lif@igsnrr.ac.cn 

Geographic region Yucheng, Shandong province, China 
116°3117.11E116°3545.48E; 36°4459.71N36°4959.81N 

Sampling date Field work: May 916, 2020; Sentinel-2 sensing: July 29, 2020; May 19,2020 

Spatial resolution 10 m×10 m 

Data format .shp, .kml, .xlsx, .tif             Data size   160 MB 

Data files 3 files 

Foundation Ministry of Science and Technology of P. R. China (2016YFA0600201) 

Data computing 
environment 

SNAP Biophysical Processor (ESA), ArcMap10.5 

Data publisher Global Change Research Data Publishing & Repository, http://www.geodoi.ac.cn 

Address No. 11A, Datun Road, Chaoyang District, Beijing 100101, China 

Data sharing policy Data from the Global Change Research Data Publishing & Repository includes metadata, 
datasets (in the Digital Journal of Global Change Data Repository), and publications (in the 
Journal of Global Change Data & Discovery). Data sharing policy includes: (1) Data are 
openly available and can be free downloaded via the Internet; (2) End users are encouraged to 
use Data subject to citation; (3) Users, who are by definition also value-added service providers, 
are welcome to redistribute Data subject to written permission from the GCdataPR Editorial 
Office and the issuance of a Data redistribution license; and (4) If Data are used to compile new 
datasets, the ‘ten per cent principal’ should be followed such that Data records utilized should 
not surpass 10% of the new dataset contents, while sources should be clearly noted in suitable 
places in the new dataset[28] 

Communication and 
searchable system 

DOI, CSTR, Crossref, DCI, CSCD, CNKI, SciEngine, WDS/ISC, GEOSS 

 

3.2 The Principles of Validation Data Development 

The aim of collecting validation data is to validate the canopy chlorophyll content products 
of Sentinel-2, with a spatial resolution of 10 m and a temporal resolution of 5 days. 
Therefore, the field observation and data processing follow the following principles. 

(1) Spatial resolution: the spatial positioning accuracy of field observation should be 
better than 10 m. 

(2) Temporal resolution: the time of field observation data and Sentinel-2 data should 
match on 1-day scale. Because of the great variation of winter wheat in each growth period, 
the ideal verification should be that the satellite sensing and the field survey are on the same 
day. However, due to various restrictions, such time consistency is rare. The processing 
principle of time consistency is: Taking the field observation time as the benchmark, using 
the latest high-quality satellite data, and assuming that the CCC changes linearly during the 
two satellite sensing periods, using the principle of inverse time interval weight, the satellite 
data is interpolated into the data corresponding to the field observation time. 

The satellite data product to be verified: the canopy chlorophyll content of Sentinel-2 
(CCCSentinel). 

Canopy chlorophyll content is the sum of all the leaf chlorophyll content (LCC), 
determined by equation (1) and (2). 
 CCCField = LAI × LCC (1) 
where LAI is leaf area index, observed by LAI-2200 in the field; LCC is leaf chlorophyll 
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density (µɡ/cm2), which is determined by field SPAD and an empirical equation. Here, we 
use an equation from Zhuge town of Luoyang, Henan province in April 2019. 
 LCC = 0.0188 × SPAD2.0033, R2 = 0.768 (2) 
In addition, if there is no LCC available, the LAISPAD of field measurement may also 
approximately verify the CCCSentinel, which is defined as: 
 CCCField = LAI × SPAD (3) 

3.3 Implementation of Field Observation 

The field observation includes two items (LAI and SPAD) and follows four steps: sampling 
design; determine the actual spatial location of sample plot; pretreatment of sample plot 
before observation; and field observation. 

3.3.1 Sampling Design (Homework, in Advance) 

Based on these Sentinel-2 CCC products, we can preliminarily select sample plots, make 
them into KML files, import them into mobile GPS tools, and use them as field navigation 
maps. CCC classification map and preliminary plot distribution map can also be printed for 
field survey. 

3.3.2 Determine the Actual Spatial Location of Sample Plot 

The location of pre-set sample plot maybe inaccurate and needs to be adjusted according to 
more detailed field information. Generally, “parcel” is the basic unit of field observation. 
Each parcel belongs to a farmer. The crop varieties and crop management in this parcel are 
relatively consistent, but the differences between plots are relatively large. In this case, the 
plot is usually long in the north-south direction and short in the east-west direction. For 
example, the parcel size of a typical family is 2,220 m2, which is equivalent to 100 m × 22.2 m, 
or 80 m × 27.75 m. The narrow side of the parcel is usually 2030 m, while the spatial 
resolution of Sentinel-2 is 10 m. Consider the spatial matching error between the satellite 
and the ground, we should choose the sample plot with smaller CCC difference between 
adjacent parcels. 

3.3.3 Pretreatment of Sample Plot Before Observation  

3.3.3.1 Sample Plot Preparation for LAI  
In order to yield LAI accurately with LAI-2200 instrument, the time interval between A and 
B measurements should be as short as possible. Therefore, before the measurement, we need 
to be well-prepared to avoid the interference of unexpected events. The sample plot 
pretreatment for LAI includes three tasks. 

(1) Determine the effective measurement range: using LAI-2200 instrument needs to pay 
attention to two angles, one is to avoid direct sunlight and surveyors’ shadow, and the other 
is to prevent LAI-2200 viewing beyond the sample plot range. The former can be covered 
with masks (e.g., 180 ºC), while the latter needs to be calculated according to the height of 
the crop. The most wide zenith angle of LAI-2200 is 68, corresponding to the ground view 
angle of 22, with Tan (22) = 0.404. Since the height of winter wheat is 80 cm, its horizontal 
distance in LAI-2200 sensor is about 200 cm. In other words, the sensing range of LAI-2200 
sensor may exceed the sample plot if it is within 200 cm of the sample plot edge. Therefore, 
the most reliable measurement area should be within 6 m × 6 m of the center of the sample 
plot, as shown in Figure 1.  

(2) Clean the underlying senescent leaves: when winter wheat upper canopy closed, its 
leaves in the lower part begin to decline. The LAI measurement accuracy of these withered 
leaves is usually low. Therefore, it is necessary to clean the senescent leaves near the ground, 
especially those close to the sensor, to ensure that there is no interference in the field of view 
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of LAI[15]. 
(3) Removal of wheat canopy dew: The optimal 

time for LAI measurement is around sunrise in the 
morning, but it is often accompanied by dew, so it is 
necessary to remove the canopy dew gently with a 
bamboo pole. 
3.3.3.2 Leaf Treatment Before SPAD Measurement 
Wheat leaves may be tarnished by various filths 
(dust, remnant of foliar fertilization and pesticide, 
insect excrement, water vapor), if not cleaned in 
advance, this dirt may contaminate the SPAD lens, 
resulting in systemic measurement error. These 
tarnished leaves can be cleaned with clean water and 
absorbent paper. 

3.3.4 LAI and SPAD Observation 

(1) LAI measurement: LAI can be measured within 
effect area around sunrise and sunset (6–10 a.m., 
16–18 p.m.) in sunny days, or the whole day on 
steady overcast days. Measurement can be conducted along three transects, with an 
A-BBBBB-BBBBB-BBBBB mode. The average value of the measurement is used to 
represent the LAI of the sample plot (Figure 1). 

(2) SPAD measurement: SPAD-502 is used to measure SPAD along three transects within 
effect area. Ten leaves from each transect (upper two leaves) are chosen to measure SPAD 
values, each leaf is evenly measured ten times (avoid main veins), the mean value of all 
measurements in one plot represents the SPAD value of this plot. 

3.4 Retrieval and Processing of Canopy Chlorophyll Content from Sentinel-2 

3.4.1 Retrieval of Canopy Chlorophyll Content Products from Sentinel-2 

Level 2A acquisition: Level 2A data can be downloaded from the sentinel data website1. After 
checking L2A’s quality flags, it is found that the two most recent clear day satellite sensing 
times with the sampling area are April 29, 2020 and May 19, 2020 respectively (Table 2). 
 

Table 2  Sentinel-2 Level-2A data used to retrieve canopy chlorophyll content 

Sensing Date L2A file name 

2020-04-29 S2A_MSIL2A_20200429T025551_N0214_R032_T50SMF_20200429T061414.SAFE 

2020-05-19 S2A_MSIL2A_20200519T025551_N0214_R032_T50SMF_20200519T070151.SAFE 
 

(2) Principle of CCC inversion algorithm and development of CCC products: ESA adopts 
hybrid algorithm for production of CCC products based on Sentinel-2, that is, using 
PROSAIL model to generate simulation data, and then inputting spectral data into trained 
artificial neural network (ANN) for inversion. 

This algorithm is integrated into the Biophysical processor module of SNAP software. 
The Sentinel-2 L2A inputs are 8 reflection bands and 4 geometric bands. The output was 
Canopy Chlorophyll Content, CCC (µɡ/cm2). The eight reflection bands are B3, B4, B5, B6, 
B7, b8a, B11, B12; the four geometric bands are: sun_zenith, sun_azimuth, view_zenith_ 
mean, view_azimuth_mean. 

3.4.2 Temporal Normalization of CCCSentinel and CCCField 

                          
1 https://scihub.copernicus.eu/dhus/#/home. 

 
Figure 1 Effective area of sample plot: for 
a 10 m×10 m plot and 80cm-high winter 
wheat, the 6 m×6 m section at the center is 
the effective area and LAI can be measured 
more accurately 
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Due to the difference of observation times (Table 3), CCCField and CCCSentinel cannot be 
directly compared. To normalize CCCSentinel from its satellite date to field observation date, 
we assume that CCCSentinel changes linearly during the two satellite observations (20 day 
interval, Table 2), thus CCCSentinel can be interpolated to that of field observation date, based 
on the inverse time interval weight, as expressed in equation (4) and (5). 

 

Table 3  Winter wheat canopy chlorophyll content observation time: field vs. satellite 

Month April  May 

Date 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Sentinel-2                      

Field                      
 

 CCCField = (1–W) – CCC0429 + W × CCC0519 (4) 
 W = T/ (T2–T1) (5) 
where, (T2–T1) are temporal interval of two Sentinel-2 observations, here is 20 d (from 
20200429 to 20200519). T1 is the temporal interval from first Sentinel-2 observation to field 
survey.  

3.4.3 Field Observation Data Quality and Validation Application 

While purpose of field observation is to validate CCCSentinel, field observations are not error 
free. Using CCCField to validate the accuracy of CCCSentinel can also check the quality of 
CCCField itself, to some degree. Two forms are used for CCCField: one uses absolute value, 
which is calculated by equation (1); and the other is the relative value, which comes from 
equation (3). R2 and RMSE were chosen as quality indicator of CCCSentinel. 

4 Data Results and Validation 

4.1 Data File Organization 

The data files are archived into three folders: 
(1) Shapefile: field observation data from 107 samples (including LAI; SPAD; CCCField, 

Unitless), and corresponding CCCSentinel (µg/cm2) developed from Sentinel-2 L2A imagery 
(interpolated to field observation date). 

(2) Excel file: exported from Shapefile, and annotated to serve as a data dictionary. 
(3) Tiff file: CCCSentinel (µg/cm2) imagery on two dates (20200429, 20200519). 

4.2 Data Results 

Based on whether SPAD or LCC is used to calculate CCCField, CCCField can be expressed in 
two forms: relative canopy chlorophyll content (CCCField=LAI × SPAD, Unitless) and 
absolute canopy chlorophyll content (CCCField = LAI × LCC, µg/cm2). 

Compared with Sentinel-2 CCC, the ground observation has the following characteristics 
(Table 4): (1) LCC is larger than SPAD; (2) The average value of “absolute Canopy 
Chlorophyll” (CCCField, µg/cm2)is larger than that of “relative Canopy Chlorophyll”(CCCField, 
Unitless), and the range is also larger; (3) The “absolute Canopy Chlorophyll”(CCCField, 
µg/cm2)is slightly larger than the average CCCSentinel (295.856), but the standard deviation 
was slightly smaller (98.491). 

4.3 Application of Field Sample Data to Sentinel-2 CCC Validation  

(1) By absolute value: the coefficient of determination (R2) of CCCField and CCCSentinel of 
five regression models were calculated, all above 0.889,9 and with an average of 0.9115. 
The slope of the linear model is 0.989,5, and there is no obvious systematic deviation (Table 
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5, Figure 2). 
 

Table 4   Chlorophyll Content of winter wheat: field observation and Sentinel-2 

 LAI SPAD LCC CCCField CCCField CCCSentinel 
 (Unitless) (Unitless) (µg/cm2) (Unitless) (µg/cm2) (µg/cm2) 

Min 1.798 44.5 37.698  92.033  82.536 100.435 
Max 6.677 64.1 78.313 414.642 490.727 455.677 

Average 4.398 58.8 66.076 260.967 295.856 292.667 
Std. Deviation 1.219  3.6  7.622  79.360  98.491 101.742 

 
Table 5  Regression analysis of winter wheat Canopy Chlorophyll Content (CCC) from field observation 
and Sentinel-2 L2A imagery: two methods 

Fitting model 
Expression of CCC by relative value  R2 

x= CCCSentinel (µg/cm2)  

y= CCCField (Unitless) 

Expression of CCC by absolute value  R2 
x= CCCSentinel (µg/cm2)  

y= CCCField (µg/cm2) 

Linear y = 0.7525x + 40.721 0.930,8 y = 0.9895x – 0.087 0.917,6 
Exponential y = 92.648e0.0033x 0.915,2 y = 81.103e0.0041x 0.9 
Logarithm y = 179.24ln(x) – 743.05 0.913,3 y = 237.54ln(x) – 1042.3 0.889,9 
Power y = 2.5266x0.8179 0.945,2 y = 0.9342x1.0089 0.928 
Polynomial y = 0.0001x2 + 0.6982x + 46.862 0.930,9 y = 0.0006x2 + 1.3493x – 43.702 0.922,1 
Average  0.927,1  0.911,5 

 

(2) By relative value: the relative CCC was calculated using equation (3). All five 
coefficients of determination (R2) of ground observation and satellite canopy CCC were 
above 0.913,3, with an average of 0.927,1, which was significantly higher than that of 
absolute model. This shows that the 
correlation with remote sensing is 
stronger when the ground is only optical 
observation. However, due to the 
different units, the slope of the linear 
model is 0.752,5, which obviously 
deviates from the 1:1 line and cannot 
directly explain the quantitative 
relationships (Table 5). 

5 Discussion and Conclusion  

(1) To obtain quality ground data, we 
need to accurately plan the field 
observation. In this study, the 
uncertainties in space, time and 
sampling were minimized as far as 
possible. 

● To minimize spatial uncertainty 
resulted from small parcels, the effective measurement area is defined based on the sample 
plot center.  

●  To temper the temporal uncertainty caused by the date discrepancy of field survey and 
Sentinel-2 sensing, an inverse time interval weight is used to interpolate original CCCSentinel 
to CCCSentinel corresponding date to field survey. 

●  In addition, the sample plots and wheat leaves were pretreated to prevent possible 
systematic deviation in the measurement process of LAI and SPAD. 

(2) Possible deficiencies: First, the original LAI measurement is used without further 

 
Figure 2  Regression of CCCField and CCCSentinel  
by linear fitting 
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refinement, and Clumping Index (CI) is not considered. Secondly, SPAD is the result of 
measuring “clean leaf”; but Sentinel-2 covers actual wheat canopy, clean or otherwise. Third, 
the SPAD-LCC transformation model is not developed from the same region, but from 
Luoyang city, Henan province in April 2018. 

(3) Conclusion: Although there may be some shortcomings, the analysis results show that, 
on the whole, the quality of ground observation data and satellite inversion data is very good. 
The coefficient of determination (R2) of linear regression between CCCField and CCCSentinel is 
0.917,6, with a close to 1:1 line and RMSE of 29.267. In comparison, a similar validation 
conducted by Xie et al. (2019)[23] , which is also for winter wheat CCCSentinel in same season 
(April–May, 2018) yet different location ( Shunyi, Beijing), yields a R2 of 0.72 and a RMSE 
of 108.30. Parry et al. (2014) [5] suggested that varieties and management have little effect 
on SPAD-LCC conversion model, which partly explains that the SPAD- LCC model from 
Luoyang performs quite well in this study. Table 4 shows that the CCC range of ground 
observation is 82.536–490.727 (μg/cm2), which indicates that CCCSentinel can explain the 
variation of CCCField value in a wide range, and the validation dataset can be applied to 
validate winter wheat CCCSentinel with medium and high coverage. 
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