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Abstract: In order to improve the spatial-temporal data quality of satellite based global soil mois-
ture retrievals, the authors developed the Global Soil Moisture Retrievals Fusion Dataset 
(2015–2019) based on multi-source satellite fusion products and using the Soil Moisture Active 
Passive retrievals to interpolate the spatio-temporal series of the ECV data, and then reprojected, 
resampled, and weighted the calculation to produce a Global Soil Moisture Retrievals Fusion 
Dataset (Global SM). The dataset was validated by comparing the values with ground observations 
from 134 monitoring stations across eight soil moisture networks in Europe. The data quality was 
improved by approximately 20%. The dataset is 6.71 GB and consists of 1,737 files; it is archived 
in .tif format in 1,737 data files with the data size of 6.71 GB.  
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1 Introduction 

Soil moisture—the volume of liquid water contained in a unit volume of soil—is a key 
physical quantity of global climate change, land surface hydrological processes, and the 
carbon cycle[1–4]. It affects vegetation growth by controlling the soil heat capacity, surface 
evaporation, and vegetation transpiration[5–7]. Therefore, obtaining accurate soil moisture 
data is necessary for assessing terrestrial ecosystem successions as well as the carbon, ni-
trogen, and water cycles; it can also provide early warnings of drought and flood disasters 
and improve estimations of crop yield[8–11]. 

Satellite remote sensing technology can obtain continuous time-series data of land surface 
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soil moisture on the global scale. Massive satellite soil moisture retrievals provide unprece-
dented opportunities for global climate evolution analysis[12–13]; however, these datasets 
have large numbers of null areas because of satellite gaps, radio frequency interference, 
vegetation optical thickness, and freezing seasons[14–16]. Different microwave bands (e.g., 
C-band, X-band, K-band, Ka-band, L-band) have different sensitivities to surface soil mois-
ture[17]. To improve the time-space sequence integrity and data quality of satellite soil mois-
ture retrievals, the European Space Agency developed the Essential Climate Variable Soil 
Moisture product (ECV SM) by fusing multi-source satellite remote sensing data of global 
surface soil moisture since 2010[18–20]. Compared with single-band satellite soil moisture 
retrievals, ECV SM has the longest time series, and its spatial sequence integrity and data 
accuracy have been significantly improved. However, the spatial coverage of this product is 
relatively low compared with that of other assimilation retrievals. Accordingly, integrating 
new satellite soil moisture retrievals can effectively improve the spatial integrity and data 
quality of ECV SM. To improve the integrity and accuracy of ECV SM retrieval data[21], we 
integrated ECV SM with the L-band Soil Moisture Active Passive (SMAP) dataset from 
2015 to 2019[22]. After reprojecting, resampling, and interpolating the data, we produced the 
daily Global Soil Moisture Retrievals Fusion dataset (Global SM)[23–26]with a resolution of 

0.25 from March 31, 2015, to December 31, 2019. 

2 Metadata of the Dataset 

The metadata summary of the dataset[27] is summarized in Table 1, which includes the data-
set full name, short name, authors, year, temporal resolution, spatial resolution, data format, 
data size, data files, publisher, and sharing policies, etc.  

3 Methods 

3.1 Data Sources 

ECV SM fuses multi-source active (ERS-1, ERS-2, MetOp-A, ASCAT) and passive micro-
wave retrievals (SMMR, SSM/I, TMI, AMSR-E, AMSR-2, Windsat, SMOS)[21] to form a 
global daily soil moisture dataset. SMAP is a global daily soil moisture retrieval dataset 
from 2015 to 2019; it is based on the L-band passive microwave radiometer inversion, with 
a spatial resolution of 36 km × 36 km[22]. Many studies have shown that the sensitivity of the 
L-band to surface soil moisture is better than that of other microwave bands, and its ground 
penetration depth is closest to the depth of the soil moisture ground monitoring sensor. 
NASA has improved the SMAP satellite sensor and its inversion algorithm to enhance its 
anti-jamming capability of ground man-made radio frequency interference. The verification 
inferred a higher accuracy and stronger spatio-temporal adaptability of SMAP SM retrievals 
relative to that of the other satellite soil moisture retrievals in ECV[23, 29–31]. 

We verified and evaluated the ECV SM and ascending and descending SMAP SM obser-
vations by comparing the data with ground-based measurements from 134 monitoring sta-
tions across eight soil moisture measurement networks in Europe. The data of the eight Eu-
ropean in-situ networks applied in this study were acquired from the International Soil 
Moisture Network[32]. The basic attributes of each in-situ measurement are listed in Table 2. 
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Table 1  Metadata summary of the “Reprocessing dataset of global soil moisture product (2015–2019)” 

Items Description 

Dataset full name Reprocessing dataset of global soil moisture product (2015–2019) 

Dataset short name Global_SM 

Authors Liu, Y. X. Y. ABB-3889-2020, Guangzhou Institute of Geography, Guangdong Academy of 
Sciences, lyxy@lreis.ac.cn 

Geographical region Global: 90 S–90 N, 180 W–180 E 

Year 2015–2019 

Temporal resolution Daily 

Spatial resolution 0.25 ×0.25 
Data format .tif 

Data size 6.71 GB 

Data files This dataset includes 1,737 files. The dataset consists of daily data files from March 31, 2015 to 
December 31, 2019, named in the form of SM-yyyymmdd.tif. For example, SM-20160101.tif is 
the global soil moisture fusion data on January 1, 2016  

Foundations National Postdoctoral Program for Innovative Talents of China (BX20200100); National Earth 
Observation Data Center of China (NODAOP2020002); Key Special Project for Introduced 
Talents Team of Southern Marine Science and Engineering Guangdong Laboratory 
(GML2019ZD0301) 

Data publisher Global Change Research Data Publishing & Repository, http://www.geodoi.ac.cn 

Address No. 11A, Datun Road, Chaoyang District, Beijing 100101, China 

Data sharing policy Data from the Global Change Research Data Publishing &Repository includes metadata, data-
sets (in the Digital Journal of Global Change Data Repository), and publications (in the Journal 
of Global Change Data & Discovery). Data sharing policy includes: (1) Data are openly avail-
able and can be free downloaded via the Internet; (2) End users are encouraged to use Data 
subject to citation; (3) Users, who are by definition also value-added service providers, are wel-
come to redistribute Data subject to written permission from the GCdataPR Editorial Office and 
the issuance of a Data redistribution license; and (4) If Data are used to compile new datasets, 
the ‘ten per cent principal’ should be followed such that Data records utilized should not surpass 
10% of the new dataset contents, while sources should be clearly noted in suitable places in the 
new dataset[28] 

Communication and 
searchable system 

DOI, DCI, CSCD, WDS/ISC, GEOSS, China GEOSS, Crossref 

 
 

Table 2  Information of the eight European in-situ measurement networks 

Name Nation Number of Stations Regional Climate Land Cover Types 

REMEDHUS Spain 20 Temperate marine climate Cropland and shrubland 

FR_Aqui France  4 Mediterranean climate Cropland and forest 

FMI Sweden 20 Climate of sub-frigid coniferous forest Woody savanna 

HOBE Denmark 27 Temperate marine climate Cropland and forest 

BIEBRZA_S Poland 18 Temperate continental climate Grassland and marshland 

TERENO Germany  5 Temperate marine climate Cropland and forest 

RMSN Romania 19 Temperate continental climate Cropland and forest 

SMOSMANIA France 21 Mediterranean climate Diverse land cover 

3.2 Data Processing 

This study aimed to improve the integrity and accuracy of ECV SM retrieval data. To evalu-
ate the quality of SMAP and ECV SM retrievals, we compared the data with the in-situ ob-
servations. Moreover, to ensure the quality and stability of the ground measurements, only 
ground records covering > 12 hr in one day were considered valid, and the daily in-situ soil 
moisture was calculated as the arithmetic averages of all sites in every network. In this study, 
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the correlation coefficient (R), bias, and unbiased root mean square error (ubRMSE) were the 
error parameters used to verify the accuracy of the ECV and SMAP data. Our results suggest 
that SMAP is a high-quality data source for ECV interpolation due to its higher accuracy. 
Secondly, to enhance the data coverage percentage, we obtained daily SMAP soil moisture 
data by calculating the arithmetic averages of the ascending and descending SMAP observations. 
Moreover, we conducted projection transformation and spatial resampling to enhance the spa-
tial consistency of the ECV SM and SMAP SM datasets. Thirdly, we used Python to read and 
traverse the ECV daily data to identify the null areas. Finally, we used the SMAP daily SM 
retrieval consistent with ECV spatial properties to interpolate the ECV SM data and produce 
the Global SM dataset. Finally, this study evaluated and verified the spatial integrity and 
accuracy of the Global SM data. The data development process is shown in Figure 1.  

 

 
 

Figure 1  Flowchart of the soil moisture retrieval fusional algorithm 
 

4 Data Results and Validation 

4.1 Data Composition 

The global soil moisture retrievals fusion dataset (2015–2019) includes a total of 1,737 files 
and consists of daily global coverage data files from March 31, 2015, to December 31, 2019 
(named in the form of SM-yyyymmdd.tif). The dataset has a spatial resolution of 0.25° × 
0.25° (approximately 25 km × 25 km). The soil moisture unit in the dataset is m3m–3, and its 
value range is [0,1].  

4.2 Data Results  

Figure 2 compares the ECV SM with the global soil moisture retrievals fusion dataset 
(2015–2019) for January 1, April 1, July 1, and October 1, 2016. The soil moisture temporal 
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and spatial distribution characteristics were highly consistent with the regional seasonal cy-
cle and ranged from 0 to 0.5 m3m–3. The dataset was significant improved in its spatial 
coverage. In winter and spring, the surface temperature was constantly below 0 °C, with 

  
 

 
 

Figure 2  Comparison Maps of ECV SM data (January (a), April (c), July (e), and October (g)) with the 
Global SM results (January (b), April (d), July (f), and October (h)) (Unit: m3m–3) 

 
frozen soil in the high latitude regions. Greenland and Antarctica were covered with snow 
and ice throughout the year; however, the soil moisture value in those area was absent, as 
microwaves can only measure the content of liquid water in soil. 
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4.3 Data Validation 

4.3.1 Integrity Assessment 

Figure 3 compares the spatial coverage of the original ECV SM and the Global SM datasets. 
After data fusion, the spatial coverage of the Global SM improved by approximately 20% 
compared with the original ECV SM. Moreover, the Global SM filled the ECV SM null 
values in the Amazon rainforest and the Congo Basin rainforest. The Global SM therefore 
effectively analyzes the continuity of soil moisture on both temporal and spatial scales. Fur-
thermore, we observed high soil moisture coverage in the middle and low altitudes (at ap-
proximately 60°S–60°N) and in areas of low vegetation coverage, as microwaves cannot 
effectively penetrate ice and vegetation (> 5 kgm–2).  

 

 
 

Figure 3  Spatial coverage of ECV SM (a) and Global SM (b) data (Unit: %) 
 

4.3.2 Accuracy Evaluation 

We verified and evaluated the ECV SM and ascending and descending SMAP SM observa-
tions by comparing the data with measurements from 134 ground-based monitoring stations 
across the eight European soil moisture networks (Figures 4–6). The horizontal lines in the 
boxplots represent the maximum, upper four quantile, median, lower four quantile, and 

 

 
 

Figure 4  Boxplots of correlation coefficients for ECV SM and SMAP SM retrievals 
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Figure 5  Boxplots of bias for ECV SM and SMAP SM retrievals 
 

 
 

Figure 6  Boxplots of RMSE for ECV SM and SMAP SM retrievals 
 

minimum values. The dotted line represents the average of an array, and the red points rep-
resent the outliers. The correlation coefficient and bias of SMAP were stronger than those of 
ECV SM, while the ubRMSE of SMAP was equivalent to that of ECV[33]. This suggests that 
the SMAP SM retrievals are reliable, of high quality, and can effectively improve the integ-
rity of the ECV SM data[34]. 

We used in-situ data to verify the accuracy of the Global SM, and the results are shown in 
Table 3. The accuracy of the Global SM was equivalent to that of ECV SM, but the Global 
SM performed better in the REMEDHUS, FR_Aqui, RSMN, and SMOSMANIA networks. 
The Global SM can therefore effectively capture the amplitude and temporal variations of 
soil moisture and accurately fit the in-situ measurements. Overall, the Global SM can pre-
cisely reflect the distribution and variability of in-situ measurements. 

To further analyze the correlation between the Global SM and in-situ data distributions, 
the curve of the probability distribution function (PDF) of the in-situ, original ECV SM, and 
Global SM datasets is shown in Figure 7. The three soil moisture datasets showed a normal 
distribution, but the ECV SM distribution (red line) was notably clustered and the curve of 
PDF of the Global SM was more closed to it of the in-situ data. 
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Table 3  Evaluation results of the Global SM data 

In-situ Measurements R Bias ubRMSE R Bias ubRMSE 

REMEDHUS 0.75  0.09 0.05  0.77  0.08 0.04 

FR_Aqui 0.76  0.11 0.04  0.77  0.11 0.04 

FMI 0.11 ‒0.08 0.07 ‒0.04  0.00 0.06 

BIEBRZA_S-1 0.60 ‒0.34 0.14  0.58 ‒0.35 0.13 

TERENO 0.67  0.02 0.06  0.57  0.02 0.06 

RSMN 0.56  0.11 0.05  0.58  0.10 0.05 

SMOSMANIA 0.62  0.08 0.10  0.68  0.07 0.06 
 

 
 

Figure 7  Soil moisture PDF curves of ECV SM data, Global SM data, and in-situ measurements 
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5 Discussion and Conclusion 

Using SMAP SM retrievals to fill in null ECV SM data points, we produced a daily global 
soil moisture dataset with a resolution of 0.25° × 0.25° from March 31, 2015, to December 
31, 2019. To ensure data quality, we verified the ECV SM, ascending and descending SMAP 
SM, and the Global_SM datasets by comparing their values with 134 in-situ measurements 
across eight European ground-based networks. We found that the Global_SM dataset 
showed equivalent values and evolutionary spatio-temporal tendencies to that of the in-situ 
measurements. Moreover, the accuracy and spatial coverage integrity of the Global_SM da-
taset were significantly improved.  

We assumed that the in-situ data represented the “ideal true value”, but its spatial resolu-
tion varied from the raster pixels with a resolution of 0.25° × 0.25°—especially in underly-
ing surfaces with complex properties. Therefore, the validation results based on the in-situ 
data can to some extent prove the quality of the Global_SM dataset but are not entirely 
equivalent to the dataset’s accuracy.  

Satellite soil moisture retrievals commonly have null areas. However, our study demon-
strates that the use of high-precision SMAP retrievals to interpolate the null areas of the 
ECV SM data is an effective method for producing a global soil moisture dataset with high 
spatial coverage. We suggest that future research attempt to retrieve soil moisture data by 
mapping the relationship between soil moisture and multi-source surface parameters (such 
as precipitation, temperature, vegetation index) based on mathematical models.  
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