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Abstract: A distributed spatial-temporal data model and online analyst system for marine envi-

ronmental research was recognized by the Geographical Society of China (GSC) as the GSC Best 

Practice Data Computing Environment 2018. The system is a practical tool for calculating the 

carbon cycle of marginal seas. To support the massive amount of data generated by satellite re-

mote sensing, on-site vessels, and buoy and shore based stations, a cloud-based, distributed, 

scalable storage model of carbon flux monitoring data was designed. The key problems of 

high-scalable storage, high-efficiency retrieval and computing of large-scale marine environmental 

data were accessed, and we constructed a PB (petabyte)-level, remote sensing carbon flux mon-

itoring data management cloud-based service platform. A heterogeneous, hybrid cloud computing 

environment was established, and an autonomously controllable, three-dimensional carbon flux 

remote sensing information service system was developed. The “Ocean Cloud Computing Data 

Center + Big Data Service Cloud Platform” technology architecture, with independent intellectual 

property rights, provides a new solution for the on-demand calculation of ocean spatial-temporal 

big data and diversified service for the Internet of Things in the future. 

Keywords: marine carbon sequestration; marine carbon sequestration; big data service; distributed  

spatial-temporal data model   

1 Background 

1.1 Scientific Direction and Goals 

The ocean absorbs nearly one-third of the CO2 emitted by humans and receives a large amount 

of terrestrial carbon (about 40% of the anthropogenic CO2). On a long timescale, such as 

millennial, CO2 can only be removed from the atmosphere by burial in deep-sea marine 

sediments or forming inert dissolved organic carbon. Therefore, the ocean is the ultimate reservoir 

of CO2 and is an extremely important component of the Earth’s carbon cycle and global cli-
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mate change. Marine carbon sequestration (blue carbon sinks) has received wide attention from the 

international communities, due to issues such as international climate negotiations and carbon 

trading programs. Satellite remote sensing, which provides long-term observations at high spatial 

and temporal resolution, is an important tool for calculating the carbon cycle of marginal seas
[1]

. 

The goals of this work were to 1) break the bottleneck of high-performance storage and 

computing technology for marine spatial-temporal data; 2) support the analysis and evalua-

tion of long-timescale, high-precision, high-frequency, large-coverage sea-air and terrestrial- 

sea carbon flux monitoring data; 3) construct a visualization model of multi-dimensional 

carbon flux processes to clarify the pattern and variability of major carbon stocks and fluxes; 

and 4) clarify the processes and mechanisms of dynamic changes in the carbon cycle, in-

cluding the interaction of natural and human factors. 

1.2 Project Organizations and Principle Investigators 

There are two organizations jointed the project: (1) Professor Zhang, F. from Zhejiang Uni-

versity, and (2) Professor Bai, Y. from Second Institute of Oceanography (SOA) of China. 

2 Data Components  

The data structure components of the integrated platform for spatial-temporal distributed 

storage and computing for marine carbon flux research are listed in Table 1, including da-

taset name, data parameter type, spatial range and resolution, temporal range and resolution, 

data sources, etc. 

Table 1  The data fabric of the distributed spatial-temporal data model and online analyst system for ma-

rine environmental research 

Dataset name Parameter type 
Spatial range and 

resolution 

Temporal range and  

resolution 
Description 

East India-West 

Pacific-South 

China Sea 

(EIO-WPO-SC

S) 

Surface suspen-

sion concentra-

tion 

(SSC) 

(10°N–46°N, 

80°E–160°E); 1.8 km 

May 2010–May 2015; daily 

average, 10-day average, monthly 

average, annual average 

Raw data from 

NASA, SIO/SOA 

production 

(10°N–46°N, 

80°E–160°E, 1); 5 km 

2003–2010; 10-day average, 

monthly average 

Raw data from 

NASA, SIO/SOA 

production 

Chlorophyll 

concentration 

(CHL) 

(10°N–46°N, 

80°E–160°E);  

1.8 km 

May 2010–May 2015; daily 

average, 10-day average, 

monthly average, annual average 

Raw data from 

NASA, SIO/SOA 

production 

(10°N–46°N, 

80°E–160°E); 5 km 

2003–2010; 10-day average, 

monthly average 

Raw data from 

NASA, SIO/SOA 

production 

Secchi Disk 

Depth (SDD) 

(10°N–46°N, 

80°E–160°E); 

1.8 km 

May 2010–May 2015; daily 

average, 10-day average, 

monthly average, annual average 

Raw data from 

NASA, SIO/SOA 

production 

(10°N–46°N, 

80°E–160°E); 

5 km 

2003–2010; 10-day average, 

monthly average 

Raw data from 

NASA, SIO/SOA 

production 

Bohai/ 

Changjiang 

Estuary 

(GOB/GOC) 

Surface suspen-

sion concentra-

tion (SSC) 

(27°N–35°N, 

119°E–126°E); 

500 m 

(37°N–41°N, 

117°E–123°E); 500 m 

2011–2017; hourly Raw data from 

KOSC/GOCI, 

SIO/SOA produc-

tion 

(To be continued on the next page) 
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(Continued) 

Dataset name Parameter type 
Spatial range and 

resolution 

Temporal range and  

resolution 
Description 

Bohai/ 

Changjiang 

Estuary 

(GOB/GOC) 

Normalized wa-

ter-leaving radi-

ance at 412 nm 

(LW1) 

(27°N–35°N, 

119°E–126°E); 500 m 

(37°N–41°N, 

117°E–123°E); 500 m 

2011–2017; hourly Raw data from 

KOSC/GOCI, 

SIO/SOA production 

Normalized wa-

ter-leaving radi-

ance at 490 nm 

(LW3) 

(27°N–35°N, 

119°E–126°E); 500 m 

(37°N–41°N, 

117°E–123°E); 500 m 

2011–2017; hourly Raw data from 

KOSC/GOCI, 

SIO/SOA production 

Normalized wa-

ter-leaving radi-

ance at 555 nm 

(LW4) 

(27°N–35°N, 

119°E–126°E); 500 m 

(37°N–41°N, 

117°E–123°E); 500 m 

2011–2017; hourly Raw data from 

KOSC/GOCI, 

SIO/SOA production 

Normalized wa-

ter-leaving radi-

ance at 660 nm 

(LW5) 

(27°N–35°N, 

119°E–126°E); 500 m 

(37°N–41°N, 

117°E–123°E); 500 m 

2011–2017; hourly Raw data from 

KOSC/GOCI, 

SIO/SOA production 

Normalized wa-

ter-leaving radi-

ance at 680 nm 

(LW6) 

(27°N–35°N, 

119°E–126°E); 500 m 

(37°N–41°N, 

117°E–123°E); 500 m 

2011–2017; hourly Raw data from 

KOSC/GOCI, 

SIO/SOA production 

Normalized wa-

ter-leaving radi-

ance at 745 nm 

(LW7) 

(27°N–35°N, 

119°E–126°E); 500 m      

(37°N–41°N, 

117°E–123°E); 500 m 

2011–2017; hourly Raw data from 

KOSC/GOCI, 

SIO/SOA production 

Normalized wa-

ter-leaving radi-

ance at 865 nm 

(LW8) 

(27°N–35°N, 

119°E–126°E); 500m 

(37°N–41°N, 

117°E–123°E); 500 m 

2011–2017; hourly Raw data from 

KOSC/GOCI, 

SIO/SOA production 

Global waters 

(GLOBAL) 

Chlorophyll 

concentration 

(CHL) 

(90°S–90°N, 

180°W–180°E); 4 km 

1997–2016; daily average,  

monthly average 

From ESA standard 

products, multi- 

satellite fusion 

products 

(90°S–90°N, 

180°W–180°E); 4 km 

Jul. 2002 to publication date; 

daily  

average, monthly average 

From NASA, Aq-

ua/MODIS products 

(90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997–Dec. 2010; daily  

average, monthly average 

From NASA, Sea-

WiFS products 

(90°S–90°N, 

180°W–180°E); 4 km 

2002 to publication date; daily 

average,  

monthly average 

From NASA, 

VIIRS products 

Sea surface tem-

perature (SST) 

(90°S–90°N, 

180°W–180°E); 25 km 

1981 to publication date; daily 

average 

From NOAA, 

AVHRR products 

(90°S–90°N, 

180°W–180°E); 25 km 

Jun. 2002 to publication date; 

daily average 

From RSS, MW_IR 

products 

 Sea surface wind 

field (SSW) 

(90°S–90°N, 

180°W–180°E); 25 km 

1987–2017; six hours, monthly 

average 

From RSS, CCMP 

products 

  (90°S–90°N, 

180°W–180°E); 25 km 

Feb. 2003 to publication date; 

daily average, monthly average 

From RSS, Windsat 

products 

(To be continued on the next page) 
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(Continued) 

Dataset name Parameter type 
Spatial range and 

resolution 

Temporal range and  

resolution 
Description 

Global waters 

(GLOBAL) 

Net primary 

productivity 

(NPP) 

(90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997–Dec. 2010; monthly 

average 

From the University 

of Oregon, SeaWiFS 

NPP products 

 (90°S–90°N, 

180°W–180°E); 9 km 

2012 to publication date; 

monthly average 

From the University 

of Oregon, VIIRS 

NPP products 

Sea surface salin-

ity (SSS) 

(90°S–90°N, 

180°W–180°E); 25 km 

Sep. 2016 to publication date; 

monthly average 

From RSS, SMAP 

products 

(90°S–90°N, 

180°W–180°E); 25 km 

Jul. 2009 to publication date; 

monthly average 

From ESA, SMOS 

products 

(90°S–90°N, 

180°W–180°E); 25 km 

2011–2015; monthly average From NASA, Aqua-

ris products 

Atmospheric CO2 

partial pressure 

(ACP) 

(90°S–90°N, 

180°W–180°E); 25 km 

Daily average From NOAA NCEP, 

model products 

Remote sensing 

reflectance (Rrs) 

(90°S–90°N, 

180°W–180°E); 4 km 

Jul. 2002 to publication date; 

daily average, monthly average 

From NASA, Aqua/ 

MODIS products 

(90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997–Dec. 2010; daily 

average, monthly average 

From NASA, Sea-

WiFS products 

(90°S–90°N, 

180°W–180°E); 4 km 

2012 to publication date; daily 

average, monthly average 

From NASA, VIIRS 

products 

Photosyntheti-

cally active radi-

ation (PAR) 

(90°S–90°N, 

180°W–180°E); 4 km 

Jul. 2002 to publication date; 

daily average, monthly average 

From NASA, Aq-

ua/MODIS products 

(90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997–Dec. 2010; daily 

average, monthly average 

From NASA, Sea-

WiFS products 

(90°S–90°N, 

180°W–180°E); 4 km 

2012 to publication date; daily 

average, monthly average 

From NASA, VIIRS 

products 

Particulate or-

ganic carbon 

(POC) 

(90°S–90°N, 

180°W–180°E); 4 km 

Jul. 2002 to publication date; 

daily average, monthly average 

From NASA, Aqua/ 

MODIS products 

(90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997–Dec. 2010; daily 

average, monthly average 

From NASA, Sea-

WiFS products 

(90°S–90°N, 

180°W–180°E); 4 km 

2012 to publication date; daily 

average, monthly average 

From NASA, VIIRS 

products 

Particulate inor-

ganic carbon 

(PIC) 

(90°S–90°N, 

180°W–180°E); 4 km 

Jul. 2002 to publication date; 

daily average, monthly average 

From NASA, Aqua/ 

MODIS products 

(90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997 to Dec. 2010; daily 

average, monthly average 

From NASA, Sea-

WiFS products 

(90°S–90°N, 

180°W–180°E); 4 km 

2012 to publication date; daily 

average, monthly average 

From NASA, VIIRS 

products 

 Surface suspen-

sion concentra-

tion (SSC) 

(90°S–90°N, 

180°W–180°E); 4 km 

Jul. 2002 to publication date; 

daily average, monthly average 

Raw data from 

NASA Aqua/ 

MODIS, SIO/SOA 

production 

  (90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997–Dec. 2010; daily 

average, monthly average 

Raw data from 

NASA/SeaWiFS, 

SIO/SOA production 

  (90°S–90°N, 

180°W–180°E); 4 km 

2012 to publication date; daily 

average, monthly average 

Raw data from 

NASA/VIIRS, 

SIO/SOA production 

(To be continued on the next page) 
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(Continued) 

Dataset name Parameter type 
Spatial range and 

resolution 

Temporal range and  

resolution 
Description 

Global waters 

(GLOBAL) 

Colored dis-

solved organic 

matter absorption 

coefficient at 443 

nm (ACD) 

(90°S–90°N, 

180°W–180°E); 4 km 

Jul. 2002 to publication date; 

daily average, monthly average 

Raw data from 

NASA Aqua/ 

MODIS, SIO/SOA 

production 

(90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997–Dec. 2010; daily 

average, monthly average 

Raw data from 

NASA/SeaWiFS, 

SIO/SOA production 

(90°S–90°N, 

180°W–180°E); 4 km 

2012 to publication date; daily 

average, monthly average 

Raw data from 

NASA/VIIRS, 

SIO/SOA production 

Particulate 

back-scattering 

coefficient (bbp) 

(90°S–90°N, 

180°W–180°E); 4 km 

Jul. 2002 to publication date; 

daily average, monthly average 

Raw data from 

NASA Aqua/ 

MODIS, SIO/SOA 

production 

(90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997–Dec. 2010; daily 

average, monthly average 

Raw data from 

NASA/SeaWiFS, 

SIO/SOA production 

(90°S–90°N, 

180°W–180°E); 4 km 

2012 to publication date; daily 

average, monthly average 

Raw data from 

NASA/VIIRS, 

SIO/SOA production 

Secchi disk depth 

(SDD) 

(90°S–90°N, 

180°W–180°E); 4 km 

Jul. 2002 to publication date; 

daily average, monthly average 

Raw data from 

NASA Aqua/ 

MODIS, SIO/SOA 

production 

(90°S–90°N, 

180°W–180°E); 9 km 

Sep. 1997–Dec. 2010; daily 

average, monthly average 

Raw data from 

NASA/SeaWiFS, 

SIO/SOA production 

(90°S–90°N, 

180°W–180°E); 4 km 

2012 to publication date; daily 

average, monthly average 

Raw data from 

NASA/VIIRS, 

SIO/SOA production 

3 Data Computing Environment 

The data computing environment includes computer server, model system, software system, 

network situation, data processing ability, data computing ability, and website dissemination. 

3.1 Hardware Environment. 

In the existing hardware environment (Table 2), the distributed file system has 200 TB of data 

storage capability. Hybrid database may support concurrent access of 100 users at the same 

time. High-performance online processing nodes can provide real-time processing capability 

of 48 threads at the same time. 

3.2 Software System 

In order to meet the calculation and service requirements of ocean big data, we used a 

Hadoop+Spark hybrid processing framework and integrated multi-core and many-core 

computing technology. We developed a distributed Process-In-Memory architecture, based 

on Multi-Cloud Coordination, providing unified storage and computing resources for marine 

distributed databases. This platform provides ocean spatial-temporal big data processing and 

information mining capabilities, for large-scale ocean carbon flux modeling analysis. 
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Table 2  The hardware for SatCO2 data sharing platform 

Number Name Description 

1 SatCO2 

NameNode 

Master node of distributed file system 

2 SatCO2 

DataNode1 

Subnode of distributed file subsystem 

3 SatCO2 

DataNode2 

Subnode of distributed file subsystem 

4 SatCO2 

Database 

Hybrid database 

5 SatCO2 

Webservice1 

High performance online processing service node 

6 SatCO2 

Webservice2 

High performance online processing service node 

7 SatCO2 

Webservice3 

High performance online processing service node 

The main components are as follows (Figure 1): 

(1) HDFS: The Hadoop distributed file system (HDFS) is highly fault tolerant and de-

signed to be deployed on low-cost hardware. It provides high throughput to access applica-

tion data for applications with very large datasets. HDFS relaxes the requirements of POSIX 

to access data in the file system in the form of streams. 

(2) Hadoop Yarn: This splits the JobTracker in MapReduce into two separate services: a 

global resource manager (ResourceManager) and an ApplicationMaster, unique to each ap-

plication. The ResourceManager is responsible for the resource management and allocation 

of the entire system, while the ApplicationMaster is responsible for the management of a 

single application. 

(3) HBase: The Hadoop Database (HBase) is a high-reliability, high-performance, 

column- oriented, scalable distributed storage system, which is suitable for unstructured 

data storage databases and is a column-based data storage model. 

(4) Hadoop MapReduce: This is Hadoop’s distributed computing framework. Because the 

framework can easily write applications, these applications can run on large clusters of 

thousands of commercial machines and process terabytes of data in parallel in a reliable, 

fault-tolerant manner. 

(5) Hive: This is a data warehousing tool based on Hadoop. It can map structured data 

files into a database table, provide simple SQL query functions, and can convert SQL 

statements into MapReduce tasks to run. 

(6) Oozie: Apache Oozie is a workflow collaboration system. It can configure the work-

flow to run the ALTER TABLE command, which is responsible for adding a partition con-

taining the last hour of data to Hive. We can also control this workflow to execute every 

hour. This will ensure that we always see the latest data. 

(7) Spark: This is applied to data mining and machine learning and other iterative 

MapReduce algorithms. 

(8) Spark Streaming: This is a real-time computing framework for processing Stream data 

on Spark, which extends Spark’s ability to handle large-scale Stream data. The basic prin-

ciple is to divide the Stream data into small time segments (a few seconds) and process the 

small portion of the data in a batch process. 
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Figure 1  The framework of SatCO2 data sharing platform 

(9) MLib: This is Spark’s extensible machine learning library. It provides machine learning 

algorithms such as classification regression, clustering, association rules, recommendation, 

dimensionality reduction, optimization, feature extraction screening, statistical methods for 

feature preprocessing, and algorithm evaluation. 

(10) Graphx: A distributed graph computing framework, based on the Spark platform, that 

provides a simple and easy-to-use interface for graph computing and graph mining. It pro-

vides a stack of data solutions based on Spark, which can easily and efficiently complete a 

set of pipeline operations for graph calculations, greatly facilitating the processing of dis-

tributed graph. 

3.3 Calculation Ability 

(1) Data connection calculation 

A new spatial connection algorithm, with embedded index-based concurrent spatial- 

temporal data retrieval technology and Spark-based in-memory database computing tech-

nology, combining the methods of cloning connection and single dataset index external 

storage space connection, was developed. The new spatial connection algorithm, based on 

distributed memory computing, was implemented using the Spark parallel programming 

model. The algorithm first uses a spatial grid to achieve space partitioning. Next, the parti-

tions are connected; the results are analyzed using a re-division model; and the partitions are 

iteratively re-divided according to the condition. Finally, each partition is processed in par-

allel using the R*tree single dataset indexing method to obtain the final result of the spatial 

connection. The results are compared with the spatial connection algorithms proposed by 

SJMR, SpatialHadoop, Hadoop-GIS, and the SpatialSpark platform. The operation involved 
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164,448,446 road networks, 72,729,686 plots, 

5,857,442 linear water systems, 2,298,808 

surface water systems, and 121,960 landmark 

polygons. Figures 2a and 2b illustrate the 

performance advantage of our algorithm. 

(2) Marine remote sensing image processing 

test 

In a remote sensing image processing per-

formance test, a single task was completed in 

20 s and 20,000 tasks took 0.17 hours. With 

the increase in the number of angle segments, 

the running speed advantage of the program 

after parallelization gradually became signif-

icant. When the number of angle segments 

reached 25, the parallelized program ran 64.6 

times faster than the stand-alone operation 

(Figure 3). 

(3) Visualization of spatial-temporal processes  

We visualized the characteristics of carbon 

concentration data; designed a progressive data 

transmission strategy between memory and 

video memory to cope with the scheduling 

problem of four-dimensional, large-scale 

spatial-temporal data; implemented a large- 

scale particle state update and half-angle 

slicing technology based on CUDA; and im-

plemented GPU programming rendering to 

achieve particle rendering
[17]

. 

3.4 Service Website 

The public welfare information service sys-

tem for marine remote sensing is a B/S sys-

tem version of the Sea-Gas Carbon Dioxide 

Flux Remote Sensing Monitoring and Evalu-

ation System (SatCO2) (IssCO2 B/S public 

version). The system provides remote sensing 

product display and basic quantitative data 

analysis functions for conventional environ-

mental parameters in the China Sea and adjacent sea areas, and provides the public with a 

quick query of marine remote sensing information. 

Website: http://www.satCO2.com 

4 Scientific Achievements 

Global climate change caused by the emission of greenhouse gases, such as CO2, seriously 

threatens human life and economic development. The United Nations has led international 

negotiations on cutting carbon emissions. China is the largest developing country in the 

world and one of the highest emitters of CO2. Coordinating energy conservation, emissions 

reduction, and economic development, to meet international carbon reduction responsibili-

 

 

(a) With data volume changes 

 

(b) With different spatial predicates 

Figure 2  Performance comparison of spatial 

connections among different algorithms 

 

Figure 3  Relationship of program running time and 

NUMMU 

http://www.satco2.com/


Zhang, F., et al.: A Distributed Spatial-temporal Data Model and Online Analyst System for Marine … 287 

 

 

ties, is a huge challenge for China. There is an urgent need to quantify China’s carbon flux 

and possible carbon sinks. According to the 2013 report of the Global Carbon Project, about 

45% of the CO2 emitted by human activities remains in the atmosphere, 27% is absorbed by 

the oceans, and 28% goes to plants. Therefore, accurate estimation of the marine carbon 

budget is necessary, in order to understand the global carbon cycle and assess climate 

change
[2]

. It is important to construct a long-term, stable ocean CO2 flux monitoring and 

evaluation system, to obtain reliable sea-gas CO2 flux evaluation results, using remote sens-

ing data. 

4.1 A Semi-analytical Remote Sensing Model of Seawater CO2 Partial Pressure 

A semi-analytical model of seawater pCO2 (MSAA-pCO2) was developed. The case study area 

was the portion of the East China Sea affected by Yangtze River freshwater. A salinity remote 

sensing inversion model of the Yangtze River freshwater surface and a high resolution distribu-

tion of the freshwater and its variability over a decade, were obtained for the first time
[3]

. The 

project also analyzed the impact of the Yangtze River freshwater on the phytoplankton algal 

blooms in the offshore area. Included in the model were the thermodynamic, horizontal and 

vertical mixing, and biological effects. We found that, compared with traditional single - 

parameter or multi-parameter empirical fit models, the mechanistic-based semi-analytic- 

algorithm (MSSA) model is a better solution for the problem of pCO2 remote sensing inversion 

in complex offshore water bodies (Figure 4). Since the model is based on physio-biochemical 

mechanisms, it can be applied to other marginal sea systems affected by large rivers.  

 

Figure 4  Particle rendering of CO2 spatiotemporal process 

4.2 Estimation of Dissolved Organic Carbon Transport Flux Using Satellite Remote 

Sensing and Numerical Simulation 

The project used satellite remote sensing inversion to obtain the surface dissolved organic 

carbon (DOC) concentration in the East China Sea. The DOC profile distribution model was 

used to estimate the three-dimensional distribution of DOC concentration
[4]

. The 

three-dimensional flow field in the East China Sea was calculated with numerical simulation. 

Using the remote sensing DOC and simulated flow fields, we estimated the DOC horizontal 

transport flux in the East China Sea. The results showed that in the Yangtze River estuary, 

along the coast of Fujian and Zhejiang provinces, the Taiwan Strait, and the Kuroshio region, 

the DOC flux was high throughout the year, but there were seasonal changes. In the East 

China Sea shelf, there were three DOC transport belts, from west to east. The transport belt 

was strong in the summer half-year (from April to September) and weak, sometimes even 

absent, in the winter half-year (from October to March). In addition, there was a DOC 
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transport belt that extended from the Taiwan Strait to the north and reached the Yangtze 

River estuary. The largest annual average DOC flux net input was from the Taiwan Strait 

into the East China Sea, reaching 30.65 Tg C/a, primarily from the eastern side of the Tai-

wan Strait. The second strongest is the Kuroshio DOC input, which is 18.75 Tg C/a at the 

200 m isobath, which comes primarily from the slope in 26°N-26.5°N. The DOC net output 

of the East China Sea is mainly located at the northern boundary (32°N), reaching -52.75 Tg C/a, 

primarily from the 100-200 m outer shelf.  

4.3 Development of a First Generation Sea-air CO2 Flux Data Product Covering Chi-

na’s Adjacent Waters (2000-2014)  

The method described in the previous section was used to determine the monthly mean 

sea-level CO2 remote sensing products in China’s adjacent waters (2000-2014). These in-

cluded atmospheric CO2 partial pressure, seawater CO2 partial pressure, sea-gas CO2 partial 

pressure difference, and sea-gas CO2, with 1 km resolution. Large-scale navigation data for 

15 voyages covering all seasons in China’s Yellow Sea, East China Sea, and South China 

Sea were obtained. This data proved that, in complex water bodies with high dynamic 

changes (200-900 μatm) in the offshore area, the average deviation of CO2 partial pressure 

in remote sensing inversion was less than 35 μatm, the average deviation of atmospheric 

CO2 partial pressure was less than 10 μatm, and the average deviation of sea-gas CO2 flux 

was less than ±4.2 mmol C/(m
2
 day)

[9–10]
.  

4.4 Examination of Ecological Changes in the Marginal Seas of the Eurasian Continent, 

(2003-2014) 

Ecosystems changes of 12 marginal seas in the Eurasian continent (2003-2014) were found 

using the system
[5–7]

. The results show that the temperature of all marginal seas increased, 

with a greater increase in the closed marginal seas, including the Black Sea, Baltic Sea, Sea 

of Japan, Mediterranean Sea, and Persian Gulf. Photosynthetically active radiation generally 

decreased, but it was not significant for the European marginal seas. Similar to sea surface 

temperature changes, seawater transparency increased in all marginal seas, with the largest 

increase rate of 3.02%/a occurring in the Persian Gulf (0.25 m/a, P = 0.0003)
[6]

. The rela-

tionship between sea surface temperature and chlorophyll concentration indicates the com-

plexity of the effects of global warming on phytoplankton
[15–16]

. 

4.5 Scientific Findings in the East China Sea 

The system was used to estimate the three-dimensional distribution of DOC concentration in 

the East China Sea
[11–12]

. The results demonstrated that along the coast of Fujian and 

Zhejiang provinces, in the Yangtze River estuary, in the Taiwan Strait, and in the Kuroshio 

region, DOC flux was high throughout the year, but there were seasonal changes
[8]

. On the 

East China Sea shelf, there were three DOC transport zones from west to east, which was 

strong in the summer half-year and weak, or even absent, in the winter half-year. In addition, 

there was a DOC transport zone that extended from the Taiwan Strait to the north and 

reached the Yangtze River estuary. The annual average DOC flux from the Taiwan Strait to 

the East China Sea was the largest. The DOC output in the East China Sea was located 

mainly at the northern boundary (32°N), primarily output from the 100-200 m outer shelf
[1]

.  

5 Conclusion 

The project team developed a remote sensing assessment information service system, for ocean 
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carbon flux (SatCO2). More than 130 researchers from 15 countries jointed the application 

training program in 2016. The data computing environment may be applied further for tech-

nical supporting for integrated application of marine environmental monitoring data, for as-

sisting energy conservation and emission reduction decision-making; and for developing 

new data products and discoveries. 
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