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Abstract: A remote sensing (RS) denoising algorithm based on the quantum-inspired concept is 

proposed for image denoising during RS image generation. Key benefits of the algorithm, including 

improvements in transmission and accuracy, were demonstrated experimentally. Firstly, the algo-

rithm carries out a logarithmic transformation and a double density dual-tree complex wavelet 

transform on the noise-added image. Secondly, a denoising of the coefficients based on Bayesian 

theory was performed and the Maxaposterior (MAP) was used to estimate the variance of the 

double-tree complex wavelet. Finally, the denoised image was obtained from the inverse transform 

of the dual-tree complex wavelet. In comparing the final data with the original image data, we found 

that the peak signal to noise ratio for the proposed algorithm was improved by over 2 dB compared 

with classical algorithms, and the edge retention index was 0.1 higher than that for common 

methods. 

Keywords: quantum remote sensing; image data processing; dual tree double density complex wavelet trans-

form; Bayesian estimation; peak signal-to-noise ratio; edge-preserving index  

1 Introduction 

Since Professor Bi, S. W. proposed the concept “Quantum Remote Sensing (QRS)” in early 

2001, the first QRS imaging prototype was developed after many stages of research, such as 

QRS theory, QRS information, QRS experimentation, QRS imaging, quantum spectral im-

aging, and QRS calculation to QRS detection
[1–2]

. For QRS calculations, QRS image pro-

cessing methods and technologies were conducted. Based on the results of aforementioned 

studies, the research group of Professor Bi, S. W. has also undertaken in-depth theoretical 

and algorithmic experiments on QRS image processing.   

Quantum image processing is a new processing method for quantum mechanics-based 

remote sensing (RS) images and is based on the concepts and theories of quantum mechan-

ics, and gives full recognition to the advantages of quantum characteristics. It combines 

quantum mechanics theory and RS image processing technology and thus introduces a new 
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research direction for RS image processing technology
[1,3]

. To date, the main achievements 

of this research include: a quantum denoising algorithm theory and simulation, a quantum 

enhancement algorithm theory and simulation, and a quantum segmentation algorithm theo-

ry research and simulation, etc. This paper focused on the first topic. 

1.1 Basic Concept of QRS 

The required RS image is obtained through a series of operations, including radiation and 

geometric correction, image embellishment, projection transformation, mosaic, feature ex-

traction, classification, and various thematic processing steps. RS image processing can be 

divided into two types: optical processing, using optical, photographic and electronic methods 

to process RS analog images (photos, negatives); and RS digital image processing, using com-

puters to process RS digital images to obtain the anticipated results. Conventional RS image 

processing methods include image embellishment processing, spatial domain processing (im-

age grayscale enhancement), image convolution, and spatial frequency domain processing
[3]

. 

  QRS is a new concept of quantum world proposed by Prof. Bi, S. W. based on traditional 

RS image processing methods. It reflects the motion laws of RS at the quantum level. The 

target for this research is the multi-space and dynamic planet-earth system with quantum 

mechanics as the underlying theory, and expressed by Schrodinger’s equation and the quan-

tum states. Research was performed mainly at the technical level on QRS theory, QRS in-

formation, experimentation, imaging, calculation, measurement, calibration, quantum spec-

tral RS and QRS application and on how to present and convey information on quantum 

states to our perception and reception. 

QRS may help us obtain a more profound, richer and more detailed picture of information 

at the microscopic level. The practical aim of research on QRS is to develop a practical sen-

sor that can be used external, whose resolution is higher than that of classical sensors
[4]

. 

1.2 Quantum Bit Representation of Images 

(1) Quantum bit and quantum system 

In quantum computing, a quantum state is represented by a quantum bit (or qubit), where 

a qubit is a two-state quantum system with two ground states. If a qubit is in two ground 

states expressed by 0  and 1 , the qubit is in a linear superposition state, which is also a 

possible state of the system and is represented by the following equation: 

 a b  0 1  (1) 

where a and b are complex numbers that satisfy the normalization
2 2

1a b  , and are 

called probability amplitude, and 
2

a and 
2

b  represent the occurrence probability of two 

ground states 0  and 1 , respectively. 

If a quantum system is in the superposition of the ground states, the quantum system is 

coherent. When a coherent quantum system interacts with its environment in a certain way, 

the linear superposition will be destroyed, which is called decoherence or collapse. If a 

quantum system consists of n qubits, then the i
th

 qubit state is 0 1i i i= a +b . The state of 

the quantum system can be represented by the direct product of the n single qubits: 
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where represents the tensor product, the state vector i  represents the i
th

 ground state of 

n qubit systems  ; 
bi represents the n-bit binary number corresponding to the decimal 

number i; iω is the probability amplitude of the corresponding ground state; and 
2

iω  is 

the occurrence probability of the corresponding ground state. Given that the function de-

scribes a real physical system, and that it will inevitably collapse to a ground state, the 

probability sum of the probability amplitude iω  is 1 and it also satisfies the normalization 

condition
2 1

2

0

1

n

i

i

ω



-

. 

(2) Pixel qubit representation 

Let us assume g(m, n) is a digital image in which ( , ) [0,1]g m n  ,
 

2( , )m n Z  represents 

the pixel gray value of the image at the position of 2( , )m n Z  after the gray level normali-

zation process. Clearly, g(m, n) and l-g (m, n) can be regarded as the probability of the pixel 

point (m, n) whose gray value is “1” and “0”, respectively. If 0  and 1  represents gray val-

ues of “0” and “1”, respectively, then the qubit of the image g(m, n) is represented as follows: 

 ( , ) 1 ( , ) 0 ( , ) 1g m n g m n g m n    (3) 

0  and 1   are introduced in the quantum system to indicate gray values of “0” and “1”, 

corresponding to the black and white points in the binary image. Their probability ampli-

tudes are respectively represented as ( , )g m n
 
and 1 ( , )g m n  when the gray values of 

the pixel points are “0” and “1”, | ( , )g m n  is the qubit representations of the image g(m, n). 

(3) Quantum images in quantum computers 

Color image models such as RGB and HIS are needed in traditional image processing to 

represent colors in a standard way. In quantum computers, due to the continuity of quantum- 

state parameters, color can be characterized by its physical parameters (such as frequency) 

rather than by a linear combination of RGB, so color models are not required. Using a qubit 

to store color requires an instrument A to detect monochromatic electromagnetic waves and 

initialize the qubit according to their frequency. When different monochromatic waves are 

detected, they are initialized to different quantum states, where the parameter θ is propor-

tional to the wave frequency. In this way, color information is stored in the qubit and one 

qubit corresponds to one pixel. To store an image, a set of quantum grids is used, which is 

like a matrix of qubits, represented by Q, Q={
,i j

q }, 1{1, 2 , }i n , 2{1, 2 , }j n , that 

is, an image can be stored as a quantum grid. The set of quantum grids R is represented by 

={ }kR Q , 3{1, 2 , }k n , therefore, 
, ,i j k

R q , containing 1 2 3n n n   qubits
[5–8]

. 
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1.3 Quantum Image Data Processing 

Quantum image data processing: Assuming that the input data (the image) is stored in elec-

tronic memory, correspondingly, the quantum state preparation means that the image infor-

mation is implicit in the quantum state. Based on image processing methods, unitary trans-

formation is applied to the quantum state and then the quantum state is detected to obtain the 

solution. This process is called quantum image processing. 

1.4 QRS Image Processing 

QRS image processing includes two types. One is based on traditional RS data and tradi-

tional computing, which is called primary QRS image processing in this paper; the second 

one is based on QRS and quantum computing, which is called advanced QRS image pro-

cessing in this paper
[3]

.
 

(1) Primary QRS image processing 

This method draws on and uses the basic concepts and principles of quantum mechanics, 

and takes advantages of quantum characteristics. It is a new or improved method of RS im-

age processing based on the principles of quantum mechanics by using traditional computors. 

This method does not rely on quantum-level physical equipment, but instead involves the 

organic combination of quantum mechanics theory and RS image processing technology, 

introducing a new theoretical tool for RS image processing technology. 

(2) Advanced QRS image data processing 

In accord with the laws of quantum mechanics, this approach aims to study image data 

based on quantum optics and quantum information theory, taking quantum state as the in-

formation carrier to reflect the motion laws of imaging at the quantum level. This method 

can fundamentally improve the image resolution and image quality. It aims to store QRS 

information and perform QRS calculations by using quantum computing. The approach 

adopts quantum algorithms, whose calculation speed has increased exponentially compared 

with conventional algorithms, providing a new way to solve the RS image data processing 

speed issue which is currently not fast enough. 

The steps of advanced QRS image processing methods are as follows: 1) Processing im-

ages via quantum mechanics (using quantum states) requires a device to convert frequencies 

into quantum states, and then quantum bit lattices are used to store images for quantum im-

age extraction; 2) Processing images with entangled quantum systems (using quantum bit 

states) to store the structure and content of simple images in a quantum system. Advanced 

QRS image data processing technology requires many technologies and methods such as 

software, data processing devices, and image data processing techniques. 

2 Introduction to Quantum Denoising Algorithm 

2.1 Research Background 

Classical image denoising methods mainly include two kinds: spatial domain and transform 

domain. Classical methods in the spatial domain, which include adaptive median filtering
[9]

, 

Lee filtering
[10]

 and Frost filtering
[11]

, can eliminate noises to a certain extent, but the pro-

cessed images are poor edge-preserved and blurred
[12]

. The spatial domain mainly include 

frequency and wavelet transforms. As wavelet transform inherent multi-frequency analysis 

and good local time and frequency domain characteristics, it shows outstanding advantages 

for synthetic aperture redar (SAR) image denoising processing
[13–14]

. Pizurica et al. proposed 
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a wavelet domain medical image denoising method using Bayesian theory, but still with lim-

ited denoising and edge retention ability
[15]

. Khare et al. proposed a denoising method based 

on complex wavelet transform, which used the imaginary product of adjacent scale complex 

wavelet coefficients to detect strong edges, and then shrink the wavelet coefficients of 

non-strong edges in the wavelet domain, thus achieving some denoising effect
[16]

. Sendur et 

al. proposed a method based on a nonlinear bi-variate contraction function (BI-DTCWT), 

which is simple and effective for additive noise filtering. Combined with logarithmic trans-

formation, the BI-DTCWT method is effective in filtering speckle noise
[17]

. The double den-

sity dual-tree complex wavelet transform combines the advantages of dual-tree complex 

transforms and double density complex wavelet transform, making it more advantageous in 

image processing such as image segmentation, speckle reduction and enhancement
[10–12]

. 

2.2 Quantum Superposition State 

In quantum computing, information is encoded by 0  and 1  states to quantify classical 

information. Inspired by quantum superposition theory, we use 0  and 1  states to rep-

resent the noise state and signal state respectively, and then encode the wavelet coeffi-

cients
[17]

. The signal wavelet coefficients between scales have a strong correlation with the noise 

level. In the image speckle method proposed in this paper, the product expression of the 

parent-progeny wavelet coefficient is: 

    1, , , ,ij

sC Y s i j Y s i j      (4) 

where θ can take six directions, ±15°, ±45° and ±75°; ij
sC  represents the product of the 

parent coefficient modulus  1, ,Y s i j   in the position (i, j) and the current progeny coef-

ficient modulus  , ,Y s i j  in the sub-band image in scale s direction θ. According to the 

quantum superposition state principle, the product ij
sC   of the high-frequency sub-band 

parental-progeny wavelet coefficient can be considered as the superposition of the two 

quantum states of noise and signal: 0 1ij
sC a b   , where a and b represent the proba-

bility amplitude of the quantum ground state 0  and 1  state, respectively. 2| |a and 
2

b  

indicate the measurement probability of the noise state 0 and the signal state 1 , respec-

tively, and the normalization condition
2 2

1a b   must be satisfied. In the high frequency 

sub-band, the signal corresponds to the edge and detail of the image. Assuming ij
sNC   is 

normalized ij
sC  ,  0,1ij

sNC   . In the algorithm proposed in this paper, θ
ij
sC is defined as: 

    cos π / 2 0 sin π / 2 1ij ij ij

s s sC NC NC       (5) 

where  cos π/2ij

sNC    and  sin π/2ij

sNC    represent the occurrence probability of signal 

and noise, respectively, of the wavelet-derived quantum-derived at position (i, j) in the 

wavelet sub-band in scale s direction θ. 

2.3 Double Density Dual-tree Complex Wavelet Transform 

The double density dual-tree complex wavelet transform (DD-DTCWT) uses three Hilbert filter 

pairs where 0h is the low-pass filter, 1h is the first-order high-pass filter and 2h the second- 
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order high-pass filter, and the two-dimensional double density dual-tree complex wavelet 

transform has two scales and four resolution functions, that is,
,h i t （）, ,g i t （）, i=1, 2. 

Two wavelet functions are obtained by offsetting half of another function, that is, 

 , 1 , 2 , 1 , 2( ) ( 0.5) ( ) ( 0.5)h h g gψ t ψ t ψ t ψ t   ，  (6) 

An approximate Hilbert transform pair is formed between the two sets of wavelet func-

tions, 

 , 1 , 1 , 2 , 2( ) { ( )} ( ) { ( )}g h g hψ t H ψ t ψ t H ψ t , . (7) 

The DD-DTCWT can be realized by two sets of three pairs of filters acting on the input data 

at the same time. Each layer of the DD-DTCWT not only decomposes the low frequency part 

but also further decomposes the two high-pass filters; meanwhile the iterative filter bank of the 

upper tree A represents the real part of the complex wavelet transform, and the iterative filter 

bank of the lower tree B represents the imaginary part of the complex wavelet transform, 

forming a double density dual-tree complex wavelet transform
[19,21]

 (Figure 1), that is,  

          i 0 1, 2j,k h j,k g j,k
x y x, y x, y j, k    , , ,  (8) 

 

Figure 1  Flow chart of two-dimensional double density dual-tree complex wavelet transform 

2.4 Algorithm Steps 

The algorithm was conducted in the following steps:  

Step 1: carry out a logarithmic transform of the SAR image, convert the multiplicative 
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speckle noise in the image into additive noise, and decompose the transformed image into a 

double density dual-tree complex wavelet. 

Step 2: After that, the wavelet coefficients of each layer are obtained, with high-frequency, 

low-frequency components and angle information, then normalize the data. 

Step 3: According to Bayesian theory, use the Bayesian Maxaposteriori Estimation (MAP): 

 
|

ˆ argmax[ ( | ) ( )]

arg max[ ( ) ( )]

y x x

n x

x P y x P x

P y x P x



 
 (9) 

Deriving the wavelet coefficient x, we can get  

 
2

2 2

( , )
ˆ( ) ( , )

( , ) n

i j
x i j y i j

i j



 



,  (10) 

The above equation shows that after calculating the standard deviation n i j ( , ) of the 

signal and the standard deviation n i j ( , ) of the noise, the value of the wavelet coefficient x 

can be obtained. 

Step 4: Introduce the quantum derivative formula: 

 cos( π / 2) 0 sin( π / 2) 1ij ij ij

s s sC NC NC       (11) 

The noise variance equation is: 

 2 45 2 2ˆ ( , ) [ (| |)/0.6745] exp(cos ( π / 2))ij

n r sθi j median y S   
。

 (12) 

where 
45
ry



 represents the real part of the wavelet high frequency subband coefficient in 

the 45° direction, and the signal variance equation is: 

 
22 2 2

( , )

1
ˆ ˆ( ) max( | ( , , ) | ( , ),0) exp(sin ( π / 2))

ij

ij

n s

m n W

i, j y s m n i j S
M

  


     (13) 

Step 5: Introduce the quantum derivative denoising factor into equation (8), calculate the 

wavelet coefficient x, and perform the DD-DTCWT inverse transformation. 

Step 6: Perform exponential transformation on the coefficients of each column and each 

row to obtain the denoised image. 

2.5 Evaluation Functions 

The mean square error (MSE) function is: 

 

2( ( , ) ( , ))s op i j p i j
MSE

m n





×
 (14) 

The peak signal to noise ratio (PSNR) function is: 

 
2255

10 logPSNR
MSE

 
  

 
×  (15) 

The edge preserving index (EPI) function is: 

 
(| ( , ) ( 1, )| | ( , ) ( , 1)|)

( | ( , ) ( 1, ) | | ( , ) ( , 1)|)

s s s s

o o o o

p i j p i j p i j p i j
EPI

p i j p i j p i j p i j

    


    




 (16) 

where m × n is the pixel value of the processed image, and ( , )sp i j  is the gray value of the 

resulting image in the i
th

 row and the j
th

 column . Similarly, ( , )op i j  is the gray value of the 

original noise image pixel at the same position, and ( , )sp i j  and ( , )op i j  are in the edge 
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area. The minimum EPI is 0 and the maximum is 1
[22–23]

. 

3 Denoising Algorithm Flow for Quantum Image Data  

The denoising algorithm flow is shown in Figure 2. The 

main steps include: input of original image data, loga-

rithmic transformation of image data, double density 

dual-tree complex wavelet decomposition, denoising 

factor calculation, layer-by-layer wavelet coefficient 

processing, wavelet inverse transformation, exponential 

transformation, and result output. 

4 Quantum Image Data Denoising Algorithm 

Simulation Experiment and Results 

Two separate sets of experiments were conducted with 

the same three parameters, namely, the addition of uni-

form random noise with (1) mean value of 0 and vari-

ance of 0.04; (2) mean value of 0 with variance of 0.1; 

(3) mean value of 0 with variance of 0.3. 

4.1 Results for the First Set of Experiments 

4.1.1 Uniform Random Noise with Mean Value of 0 

and Variance of 0.04  

Figure 3 shows the denoising results for the quantum 

algorithm, the Frost algorithm, the Median filtering, and the Wiener algorithm after the addi-

tion of noise (mean value of 0, variance of 0.04) compared with the original image and the 

noise-added image. Table 1 lists the evaluation parameters for noise reduction. Among them, 

the PSNR and the EPI of the quantum algorithm was higher than that of the other algorithms 

(Table 1), indicating that the quantum algorithm performed the best. Also the PSNR of the 

quantum algorithm was 9.41% higher than the other algorithms. Furthermore, the EPI of the 

quantum algorithm was 60.38% higher than the three traditional algorithms (Table 1, Figure 3). 

Among them, Improvement percentage=(results of Quantum algorithm-results of the other al-

gorithms)/results of the other algorithms (the same below). 

4.1.2 Uniform Random Noise with Mean Value of 0 and Variance of 0.1 

Figure 4 shows the denoising results for different algorithms after addition of noise (mean 

value of 0, variance of 0.1) compared with the original image and the noise-added image and 

Table 2 lists the noise reduction evaluation parameters. Among them, the PSNR and the EPI 

of the quantum algorithm was higher than that of the other algorithms (Table 2), indicating 

that the quantum algorithm performed the best. Also the PSNR of the quantum algorithm 

was 10.89% higher than the three traditional algorithms, and the EPI for the quantum algo-

rithm was 50% higher than the three traditional algorithms (Table 2, Figure 4). 

4.1.3 Uniform Random Noise with Mean Value of 0 and Variance of 0.3 

Figure 5 shows the denoising results for different algorithms after the addition of uniform 

random noise with a mean value of 0 and a variance of 0.3 compared with the original image 

 

 

Figure 2  Quantum image data de-

noising algorithm flow chart 
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and the noise-added image. Table 3 lists the noise reduction evaluation parameters. Among 

them, the PSNR and the EPI of the quantum algorithm were higher than those of the other 

algorithms (Table 3), indicating that the quantum algorithm gave the best performance. Also 

the PSNR for the quantum algorithm was 14.54% higher than the three traditional algo-

rithms, and the EPI for the quantum algorithm was 38.6% higher than the three traditional 

algorithms (Table 3, Figure 5). 

   
(a) Original image                (b) Noise-added image.           (c) Quantum algorithm 

   
(d) Frost                     (e) Median filtering                       (f) Wiener 

Figure 3  Experimental results for uniform random noise with mean value of 0 and variance of 0.04. 

Table 1  Comparison of the denoising results for the different processing methods after addition of noise 

(mean value of 0, variance of 0.04) 

Processing method PSNR 
Improvement percentage 

(%) 
EPI 

Improvement percentage 

(%) 

Quantum algorithm 25.344,7 - 0.85 - 

Frost 21.326,7 18.84 0.53 60.38 

Median filtering 22.538,7 12.45 0.36 136.11 

Wiener 23.165,9 9.41 0.52 63.46 

4.2 Results for the Second Set of Experiments 

4.2.1 Uniform Random Noise with Mean Value of 0 and Variance of 0.04 

Figure 6 shows the denoising results for different algorithms after the addition of uniform ran-

dom noise (mean value of 0, variance of 0.04) compared with the original image and the 

noise-added image and Table 4 lists the noise reduction evaluation parameters. Among them, the 

PSNR and the EPI of the quantum algorithm were higher than those of the other algorithms (Ta-

ble 4), indicating that the quantum algorithm gave the best performance. Also the PSNR for the 

quantum algorithm was 13.83% higher than the three traditional algorithms. Further, the EPI for 

the quantum algorithm was 75% higher t han the three traditional algorithms (Table 4, Figure 6). 
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(a) Original image                      (b) Noise-added image            (c) Quantum algorithm 

   
(d) Frost                        (e) Median filtering                         (f) Wiener  

Figure 4  Experiment results for uniform random noise with mean value of 0 and variance of 0.1  

Table 2  Comparison of denoising results for the different processing methods after addition of uniform 

random noise with mean value of 0 and variance of 0.1 

Processing method PSNR 
Improvement percentage 

 (%) 
EPI 

Improvement percentage 

 (%) 

Quantum algorithm 25.35 - 0.84 - 

Frost 18.48 37.18 0.56 50.00 

Median filtering 19.76 28.29 0.32 162.50 

Wiener 22.86 10.89 0.45 86.67 

4.2.2 Uniform Random Noise with Mean Value of 0 and Variance of 0.1 

Figure 7 shows the denoising results for different algorithms after addition of uniform ran-

dom noise (mean value of 0, variance of 0.1) compared with the original image and the 

noise-added image.  

   
(a) Original image                    (b) Noise-added image          (c) Quantum algorithm 

(To be continued on the next page) 
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(Continued) 

   
(d) Frost                          (e) Median filtering                      (f) Wiener 

Figure 5  Experimental results for uniform random noise with mean value of 0 and variance of 0.3 

Table 3  Comparison of denoising results for the different processing methods after addition of uniform 

random noise with mean value of 0 and variance of 0.3 

Processing method PSNR 
Improvement percentage 

(%) 
EPI 

Improvement percentage 

(%) 

Quantum algorithm 22.30 - 0.79 - 

Frost 14.87 49.97 0.57 38.60 

Median filtering 15.98 39.55 0.33 139.39 

Wiener 19.47 14.54 0.41 92.68 

 

   
(a) Original image                 (b) Noise-added image            (c) Quantum algorithm 

   
(d) Frost                        (e) Median filtering                    (f) Wiener  

Figure 6  Experimental results for uniform random noise with mean value of 0 and variance of 0.04 

Table 5 lists the evaluation parameters for noise reduction. Among them, the PSNR and 

the EPI of the quantum algorithm were higher than those of the other algorithms (Table 5), 
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indicating that the quantum algorithm performed the best. Also the PSNR for the quantum 

algorithm was 11.01% higher than the three traditional algorithms. Furthermore, the EPI for 

the quantum algorithm was 58.18% higher than that of the three traditional algorithms (Ta-

ble 5, Figure 7). 

Table 4  Comparison of denoising results for the different processing methods after addition of uniform 

random noise with mean value of 0 and variance of 0.04 

Processing method PSNR 
Improvement percentage 

(%) 
EPI 

Improvement percentage 

(%) 

Quantum algorithm 25.43 - 0.91 - 

Frost 20.84 22.02 0.52 75.00 

Median filtering 21.98 15.70 0.31 193.55 

Wiener 22.34 13.83 0.44 106.82 

   

  (a) Original image           (b) Noise-added image            (c) Quantum algorithm 

   

(d) Frost                    (e) Median filtering                        (f) Wiener 

Figure 7  Experimental results for uniform random noise with mean value of 0 and variance of 0.1 

Table 5  Comparison of denoising results for the different processing methods after addition of uniform 

random noise with mean value of 0 and variance of 0.1 

Processing method PSNR 
Improvement percentage 

(%) 
EPI 

Improvement percentage 

(%) 

Quantum algorithm 24.40 - 0.87 - 

Frost 18.14 34.51 0.55 58.18 

Median filtering 19.38 25.90 0.47 85.11 

Wiener 21.98 11.01 0.40 117.50 

 

4.2.3 Uniform Random Noise with Mean Value of 0 and Variance of 0.3 

Figure 8 shows the denoising results for different algorithms after addition of uniform ran-
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dom noise (mean value of 0, variance of 0.3) compared with the original image and the 

noise-added image. Table 6 lists the noise reduction evaluation parameters. Among them, the 

PSNR and the EPI of the quantum algorithm were higher than those of the other algorithms 

(Table 6), indicating that the quantum algorithm gave the best performance. Also, the PSNR 

of the quantum algorithm was 18.83% higher than that of the three traditional algorithms. 

Furthermore, the EPI of the quantum algorithm was 42.86% higher than that of the three 

traditional algorithms (Table 6, Figure 8). 

   
(a) Original image                 (b) Noise-added image            (c) Quantum algorithm 

   
(d) Frost                           (e) Median filtering                     (f) Wiener  

Figure 8  Experimental results for uniform random noise with mean value of 0 and variance of 0.3 

Table 6  Comparison of denoising results for different processing methods after the addition of uniform 

random noise with mean value of 0 and variance of 0.3 

Processing method PSNR 
Improvement percentage 

(%) 
EPI 

Improvement percentage 

(%) 

Quantum algorithm 22.34 - 0.80 - 

Frost 14.60 53.01 0.56 42.86 

Median filtering 15.71 42.20 0.32 150.00 

Wiener 18.80 18.83 0.38 110.53 

4.3 Summary of Two Sets of Experiments 

From the results of the two sets of experiments, it is clear that both the PSNR and the EPI of 

the quantum algorithm were higher than those of the three conventional algorithms. Specif-

ically, (1) for the addition of noise with mean value of 0 and variance of 0.04, the PSNR and 

the EPI of the quantum denoising algorithm were 10%-20% and 60%-160% higher than 

those of the classical algorithms, respectively (Table 7); (2) for the addition of noise with 

mean value of 0 and variance of 0.1, the PSNR and EPI of the quantum denoising algorithm 
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were 10%-35% and 50%-120% 

higher than those of the classical 

algorithms, respectively (Table 8); 

and (3) for the addition of noise 

with mean value of 0 and variance 

of 0.3, the PSNR and EPI of the 

quantum denoising algorithm were 

15%-50% and 40%-140% higher 

than those of the classical algo-

rithms, respectively (Table 9). 

5 Discussion and Conclusion  

The two sets of experiments 

demonstrated that the quantum de-

noising algorithm performed better 

than the three conventional algo-

rithms. The PSNR obtained by the 

quantum algorithm was 2 dB higher 

than that afforded by conventional 

methods, and the EPI was higher by 

more than 0.1 relative to the com-

mon methods. The quantum de-

noising method performed well in 

recovery of contour information, 

effectively being able to distinguish 

image signals from noise, enhancing 

the adaptability of local filtering, 

and preserving more image edge 

details. Therefore, the performance of the quantum denoising algorithm was significantly 

improved compared to the conventional methods. 

The proposed algorithm combines the DD-DTCWT, Bayesian theory, and quantum deriv-

ative thought and achieves good experimental results. Combining the DD-DTCWT with 

quantum derivative methods can promote each other, and better address the contradiction 

between on the one hand denoising smoothing and maintaining detail, and on the other hand 

improving the image processing quality. Experimental results showed that the quantum im-

age denoising algorithm performed very well in image detail retention and presented en-

hanced visual effects and data precision. 

The past two years have witnessed an acceleration in research and development in the 

quantum computing and quantum communication fields, while progress in quantum image 

processing has been modest, despite efforts by the team of Professor Bi to address the latter. 

Given that quantum computers have not yet been developed, and current photon quantum 

computing prototypes cannot realize general-purpose computing but can only be used for 

Bose sampling, the capacity of existing photon quantum computing prototypes is restrained 

in some specific tasks, making it especially important to develop quantum image processing 

at this early stage. When quantum computers become available, the quantum image pro-

cessing theory and technology could be developed more efficiently. 

Table 7  Average improvement percentage of quantum pro-

cessing method than other algorithms in two denoising ex-

periments with noise whose mean value being 0 and variance 

being 0.04  

Processing method PSNR EPI 

Frost 20.43%  67.69% 

Median filtering 14.08% 164.83% 

Wiener 11.62% 85.14% 

 

Table 8  Average improvement percentage of quantum pro-

cessing method than other algorithm in two denoising exper-

iments with noise whose mean value being 0 and variance 

being 0.1  

Processing method PSNR EPI 

Frost 35.85%  54.09% 

Median filtering 27.10% 123.81% 

Wiener 10.95% 102.09% 

 

Table 9  Average improvement percentage of quantum pro-

cessing method than other algorithm in two denoising exper-

iments with noise whose mean value being 0 and variance 

being 0.3  

Processing method PSNR EPI 

Frost 51.49%  40.73% 

Median filtering 40.88% 144.70% 

Wiener 16.69% 101.61% 
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