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Abstract: Solar radiation zoning is the foundation for guiding solar energy utilization and 
formulating regional development plans. The dataset provide the boundaries based on two 
algorithms for hierarchical solar radiation zoning in China, including fine boundaries of 5 primary 
zones and 10 sub-zones. An automatic zoning algorithm based on Gaussian mixture model is 
employed to identify solar radiation zones, whose number is adaptively determined by Bayesian 
inference. We utilize the ground observations of solar radiation at 98 stations from 2007 to 2020 for 
Gaussian mixture model fitting, and then introduce spatially continuous solar radiation products 
from remote sensing images into the fitted model to identify the boundaries of adjacent zones. The 
zoning results are validated using sunshine-based solar radiation products at 716 weather stations. 
It is revealed that the zoning algorithm can divide stations with different solar radiation 
characteristics into plausible zones with an accuracy rate of approximately 90%. In addition, most 
inaccurate stations are located within the zone rather than near the boundaries, which further 
proves the reliability of the used algorithm and identified boundaries. 
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1 Introduction 

Solar photovoltaic (PV) shows great potential in promoting global carbon neutrality[1]. Due 
to the geographical diversity of climate, the power generation efficiency of solar PV always 
presents significant spatial differences[2]. Solar radiation zoning is considered to be the most 
direct and practical method to gain insight into regional differences of solar energy, and is 
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the basis for strategic planning oriented to solar market, site selection of PV power plants 
and placement of energy storage facilities[3–5]. For example, solar radiation zoning is 
beneficial for government energy departments to design PV development roadmaps[6], 
screen suitable regions for centralized PV plants[7], put solar facilities in public, etc.[8]. 

Climate zones have been extensively studied worldwide, and researchers have established 
a variety of climate zoning systems based on different climate variables and indices[9]. In 
China, by taking passive heat energy utilization of buildings as reference[10, 11], the widely 
used building climate zones divide the climate into five major categories: severe cold, cold, 
hot summer & cold winter, hot summer & warm winter, and temperate. The development of 
bioclimatic map theory has gradually promoted the concept of bioclimatic zones[10, 12]. Lam 
et al. (2006) analyzed weather data from 18 typical cities in China and classified the country 
into nine bioclimatic zones. Wan et al. (2010) identified 5 bioclimatic zones and 8 subzones 
in China based on a long-term investigation of summer and winter heat stress discomfort. In 
addition to temperature, environmental factors such as humidity and wind speed are also 
gradually included into the zoning process of climates, resulting in more elaborate climate 
zones, which however become fragmented and complicated. 

There are relatively few zoning schemes aiming at solar energy use. Traditional solar 
radiation zoning is based on the amount of annually cumulative solar radiation observed at 
weather stations, searching for natural discontinuities to determine the zoning threshold[11, 13]. 
For example, Lau et al. (2007) calculated the monthly average clear sky index with solar 
radiation observations of 123 stations and proposed a scheme containing 5 solar radiation 
zones through cluster analysis[14]. However, due to the sparse and uneven distribution of 
ground observation stations, it is often difficult to determine the zone to which a point far 
from the observation stations belongs. Liu et al. (2017) first divided 98 solar radiation 
observation stations into 5 zones through K-Means clustering and then adopted support 
vector machine to establish an empirical relationship between global solar radiation and 
meteorological variables within each zone. Subsequently, this relationship was used to 
predict the zones that more densely distributed weather stations belong to, thus identifying 
more reliable zone boundaries than that raised by Lau et al. (2017)[15]. As the regional 
zoning process still relies on the spatial density of weather stations, the scheme proposed by 
Liu et al. (2017) suffers from incorrect zoning and inaccurate boundaries in the climate 
transition zone. Spatially continuous estimates of surface solar radiation are the only method 
to determine the accurate boundary of adjacent zones. A large number of studies have 
demonstrated that remote sensing inversion products can capture regional differences and 
hourly changes of surface solar radiation at the kilometer to meter scale[16], so that they can 
be employed to identify the boundary of solar radiation zones at fine scales. In addition, 
traditional clustering methods require determining the number of solar radiation zones based 
on prior knowledge. However, to determine the most appropriate number of zones in 
practice is faced with serious challenges, and inappropriate selection of the number of zones 
usually leads to undesirable or even misleading results, such as over-fitting[17]. 

In view of the diversification of zoning systems, inaccurate identification of zoning 
boundaries, and difficulty in determining the right number of zones, a new algorithm based 
on Gaussian mixture model is proposed to identify the hierarchical system of solar radiation 
zoning and determine zoning boundaries by using spatial continuous remote sensing 
inversion products[18]. The algorithm treats the number of zones as a random variable and 
then automatically determines the most appropriate number from the training data by virtue 
of Bayesian inference. Bayesian inference also ensures more reliable zoning results by 
selecting a more appropriate prior distribution and additional physical knowledge[19]. 
Through integrating surface solar radiation observations from 2007 to 2020 and remote 
sensing estimates with spatial and temporal continuity, the algorithm proposed in previous 
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studies is applied for solar radiation zoning and boundary identification in China, thus 
generating the dataset on the boundaries of hierarchical solar radiation zones in China. 

2 Metadata of the Dataset 

The metadata of the Boundary dataset based on two algorithms of the hierarchical solar 
radiation zones in China are summarized in Table 1. 

 

Table 1  Metadata summary of the Boundary dataset based on two algorithms of the hierarchical solar 
radiation zones in China 

Items Description 

Dataset full name Boundary dataset based on two algorithms of the hierarchical solar radiation zones in China 

Dataset short name SolarRadiationZones 

Authors Jiang, H. DTW-0666-2022, Institute of Geographical Sciences and Resources Research, Chinese
Academy of Sciences, jiangh.18b@igsnrr.ac.cn 

Geographical region China 

Year Multi-year average（2007–2020） 
Data format .shp   

Data size 3.10 MB   

Data files Containing 2 files: one is the boundaries of the five primary solar radiation zones; the other is the
boundaries of the ten sub-zones 

Foundations Open Fund of State Key Laboratory of Remote Sensing Science (OFSLRSS202204); National 
Natural Science Foundation (42201382) 

Data publisher Global Change Research Data Publishing & Repository, http://www.geodoi.ac.cn 

Address No. 11A, Datun Road, Chaoyang District, Beijing 100101, China 

Data sharing policy 
 

Data from the Global Change Research Data Publishing & Repository includes metadata, dataset 
(in the Digital Journal of Global Change Data Repository), and publications (in the Journal of
Global Change Data & Discovery). Data sharing policy includes: (1) Data are openly available and 
can be free downloaded via the Internet; (2) End users are encouraged to use Data subject to 
citation; (3) Users, who are by definition also value-added service providers, are welcome to 
redistribute Data subject to written permission from the GCdataPR Editorial Office and the 
issuance of a Data redistribution license; and (4) If Data are used to compile new dataset, the ‘ten 
per cent principal’ should be followed such that Data records utilized should not surpass 10% of the 
new dataset contents, while sources should be clearly noted in suitable places in the new dataset[7] 

Communication and 
searchable system 

DOI, CSTR, Crossref, DCI, CSCD, CNKI, SciEngine, WDS/ISC, GEOSS 

3 Methods 

3.1 Data Sources 

The raw data used in the dataset include ground station observations and remote sensing 
inversion products of surface solar radiation. The ground measurements are obtained from 
the monthly value dataset provided by the Meteorological Data Center of the China 
Meteorological Administration1, which provides monthly average of the total solar radiation 
in units of 0.01 MJ/m2 at 98 solar radiation stations over the period from 2007 to 2020. 
Specific procedures for quality control of the raw data include automatic checks of physical 
thresholds, temporal continuity, and time series consistency, as well as additional manual 
checks of automatically identified error records. More stricter quality control needs to be 
implemented during the production of the dataset through comparison to the reconstructed 
data based on remote sensing inversions[22], i.e., data records with absolute difference ratios 
(divide the difference between measured and reconstructed values by measured values) 
greater than 20% are removed and then filled in by the multi-year average. 

                       
1 China Meteorological Data Website. http://data.cma.cn/. 
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Remote sensing inversion products used in this study come from research of Jiang et al.[2], 
which developed a deep learning algorithm to retrieve the surface solar radiation from 
geostationary meteorological satellite images. The algorithm relies on convolutional neural 
networks to process the spatial proximity effect of solar radiation transmission[23], which 
significantly improves the inversion accuracy of surface solar radiation. Dataset during the 
2007 to 2020 have been published[24] and are freely available, providing monthly averages of 
total surface solar radiation at 0.05° × 0.05° resolution in China. Validation of data based on 
ground-based solar radiation stations shows that the root mean square error of the monthly 
average is about 1.49 MJ/m2[25], which is better than other widely used products such as 
CERES-EBAF and GEWEX-SRB[22]. 

3.2 Data Processing 

Solar radiation zoning mainly depends on cluster analysis, which is the process of 
classifying a dataset into different classes or clusters, where objects in the same cluster 
display great similarities while objects between different clusters have great dissimilarities. 
Solar radiation zones in the dataset are identified through a clustering method based on 
Gaussian mixture model (GMM), which can smoothly approximate the density distribution 
of arbitrary shapes. Our previous study[18] examined the feasibility in solar radiation zoning 
using finite GMM and infinite GMM. Specifically, the finite GMM generates zoning results 
under a predefined zone number like the K-Means method while the infinite GMM model 
can determine the appropriate number of zones adaptively with its Bayesian properties. The 
results manifest that the finite GMM model is prone to overfitting effects during the zoning 
process, while the infinite GMM can effectively avoid overfitting and ensure that the zoning 
results fully reflect the inherent characteristics of solar radiation in different regions[18]. 

Therefore, the infinite GMM is adopted as a clustering algorithm in the dataset to 
implement hierarchical identification of solar radiation zones in China. The implementation 
process of the whole algorithm (as in Figrue 1) includes the following main steps. First, 
taking the multi-year (2007–2020) monthly average of global solar radiation measured by 
ground solar radiation stations as input, 98 stations in China are clustered based on GMM 
clustering method. Second, by inputting the spatially continuous multi-year average 
(2007–2020) of global solar radiation obtained by remote sensing inversion into the fitted 
GMM model in step 1, the posterior probability of each pixel belonging to different clusters 
is predicted, and the cluster label with the maximum probability is assigned to the pixel. In 
this way, a spatially continuous zone map is generated. Third, since the direct zoning results 
of the GMM model usually have raster polygons with very small areas (containing only a 
few pixels or even one pixel), we further use a sieve filter to remove polygons whose 
number of pixels are smaller than the predefined threshold and assign the classification 
labels of their neighboring polygons with the largest area to them. Fourth, with the zone 
boundaries based on the obtained spatially continuous zone map extracted, post-processing 
operations is performed such as smoothing the boundaries. 

3.3 GMM Algorithm 

A GMM is a mixture distribution consisting of K Gaussian sub-distributions, which can be 
expressed as:  

  
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Figure 1  The process of acquiring the boundaries of hierarchical solar radiation zones in China 
 

where x refers to the data vector of N observations (e.g., measurements from 98 stations) and 
each observation contains D dimensional features (e.g., 12 monthly mean global solar 

radiation),  πk, k=1, …, K represents the mixture weights and satisfies 
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 ,k kg x Σ∣ , k=1, …, K, denotes the probability sub-distribution. Each sub-distribution is 

a D dimensional Gaussian function of the following form: 
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with mean vector k  and covariance matrix Σk . The complete GMM is parameterized by 

mean vectors  , covariance matrices Σ  and mixture weights  . Herein, we represent 

these parameters by the notation: { , , }Σ   . Compared with the classical unimodal 

Gaussian model or nearest neighbor model, GMM exhibits better modeling capability owing 
to the combination of multiple Gaussian functions. Expectation-maximization (EM) which is 
a widely used algorithm to estimate the parameters of GMM aims to figure out the 
parameters that maximize the likelihood of GMM on the training data. Given the training 

observations  1, , Nx x x  , the likelihood of GMM is expressed as: 

  
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EM begins with an initial   and estimates a new  , such that ( ) ( )p x p x ∣ ∣≥ . The 

new   then becomes the initial   for the next iteration. Notably, the process is repeated 
until a convergence threshold is reached (details can refer to the reference[18]). 

4 Data Results and Validation 

4.1 Data Composition 

The dataset consists of two data files: one is the boundaries of the five primary solar 
radiation zones; the other is the boundaries of the ten sub-zones. 
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4.2 Zoning Results 

Figure 2 illustrates the 5 primary zones in the hierarchical solar radiation zoning system and 
their annual solar radiation variations. The base map is the topography in China for 
illustrating the geographical units involved in each zone. Zone I includes the Qinghai-Tibet 
Plateau, Yunnan-Guizhou Plateau, and their surrounding areas, and the monthly average 
global solar radiation in Zone I is always higher than that in other regions, with the 
maximum value occurring in June at 24.8 MJ/m2 and the annual average global solar 
radiation of about 20.1 MJ/m2, which is the result of the combined effect of high altitude, 
thin aerosols, and low cloudiness[25]. Zone II includes the Junggar Basin, Tarim Basin, Inner 
Mongolia, and part of the Loess Plateau. The annual average global solar radiation (16.3 
MJ/m2) of Zone II is in the second rank, but the absolute intra-annual variation is the largest, 
with the highest in June and the lowest in December (a difference of 15.6 MJ/m2). Zone III 
mainly covers the northern and northeastern China, and the maximum global solar radiation 
of Zone III appears in June, with a monthly average value of 18.4 MJ/m2. The changes of 
Zone II and Zone III are almost synchronized, but the magnitude is different. Zone IV is 
located in south of the Qinling-Huaihe line, including the middle and lower reaches of the 
Yangtze River plain, the southern hills and the eastern part of the Yunnan- Guizhou plateau. 
Zone IV consists of the Sichuan Basin and the Wuling Mountains. The annual average global 
solar radiation of Zone IV and Zone V is 12.7 MJ/m2 and 11.2 MJ/m2, respectively; and their 
differences are mainly concentrated in autumn and winter, when there is more solar radiation 
in Zone IV. The highest global solar radiation of Zone IV occurs in July at 18.3 MJ/m2, while 
that of Zone V occurs in August at 16.7 MJ/m2. In particular, both Taiwan Island and Hainan 

 

 

Figure 2  Maps of five primary zones in the hierarchical solar radiation zoning system and their annual 
variations in solar radiation 
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Island are involved in 2 zones. The solar radiation characteristics of the central mountain of 
Taiwan Island and the southwest region of Hainan Island are similar to those of Zone I, and 
those of other regions of the islands are similar to those of Zone IV. 

As the number of zones determined by the GMM gradually increases, the 5 primary zones 
begin to split and produce subzones. Figure 3a presents the results of the ultimate ten 
subzones. The splitting process of the 5 primary zones is as follows. First, the Junggar Basin 
and Xilinguole Steppe are separated from Zone II; then Zone I is divided into 2 parts, i.e., 
Qinghai-Tibet Plateau and Yunnan-Guizhou Plateau; subsequently, Zone II continues to split 
and forms a new zone on the Loess Plateau; later, the Daxinganling and its western area are 
separated from Zone III; and finally, Zone IV is classified into 2 parts with the dividing line 
being close to the latitude line of approximately 23°±3°N. The ten subzones are marked by 
two-level labels. As can be seen from Figure 3a, the spatial division of the ten subzones is 
basically within the boundaries of the 5 primary zones, and the boundaries between the 
major zones remain almost unchanged, which indicates the stability of the five primary 
division schemes determined by GMM. Hainan Island is still divided into two subzones, and 
its southwestern region is similar to the Yunnan-Guizhou Plateau in terms of solar radiation 
characteristics, while the other regions are closer to the southern coastal zone of the 
mainland. Taiwan Island is redivided into three subzones encompassing IV-A, IV-B, and I-B 
from north to south, indicating that its solar radiation characteristics have higher similarity 
to those of the middle and lower reaches of the Yangtze River region, the southern coastal 
region, and the Yunnan-Guizhou Plateau. 

Figure 3b compares the variation of monthly average of global solar radiation in ten 
subzones. The global solar radiation of subzone I-B is significantly lower than that of 
subzone I-A, especially in summer. Their difference is primarily caused by altitude 
difference. Under the influence of the North Indian Ocean monsoon, the global solar 
radiation of subzone I-B fluctuates greatly. Influenced by summer monsoon, the solar 
radiation received by zone II-B in May to September is less than that in subzone II-A. The 
difference between subzone II-A and subzone II-C is concentrated in winter, when the solar 
altitude angle of subzone II-C is smaller on the whole, resulting in lower global solar 
radiation than subzone II-A. The east and west parts of subzone II-C are basically within the 
same latitudes, thus contributing to similar solar radiation characteristics. The monthly 
average of global solar radiation of subzone III-A is lower than that of subzone III-B in 
summer but higher in winter. The global solar radiation of subzone IV-B is higher than 
subzone IV-A, especially in autumn and winter. Zone IV (Sichuan basin and its surroundings) 
always has the lowest global solar radiation among all subzones due to frequent cloudy and 
rainy weathers. It is worthy to note that high mountains in the northwestern of the Sichuan 
basin block the southeastern monsoon that carries water vapor, making the topographic rain 
prevail in the basin. Meanwhile, the lower elevation of the basin relative to the surrounding 
areas constitutes an enclosed space where evaporated water vapor collects to form rainfall. 
Therefore, perennial fog and cloudy weather reduce the amount of solar radiation received in 
the Sichuan Basin. 

4.3 Data Validation 

The validation of solar radiation zoning results is a challenging task considering no real zone 
labels are available for references. Herein, we make use of the solar radiation dataset based 
on sunshine hours[26] to manually divide 716 meteorological stations. From the analysis of 
the results in Section 4.2, it can be tentatively determined that the GMM zoning is mainly 
based on the total amount of global solar radiation and the difference in seasonal variations.  
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Figure 3  Maps of the subzones in the hierarchical solar radiation zoning system and their annual 
variations in solar radiation 

 
Afterwards, we manually classify them based on corresponding rules and then compare the 
classification results with the results of GMM. The manual classification process is as follows: 
1) Group the 716 stations using the boundaries in Figure 3a and calculate the centroid of each 
group according to the annual mean and monthly variation of solar radiation, respectively; 2) 
Calculate the Euclidean distance from each station to the centroid of the zone to which it 
belongs using the Dynamic Time Warping (DTW) algorithm; 3) Calculate the distance from 
each station to the centroid of its nearest neighbor employing the DTW algorithm; 4) If the 
distance of a station to the centroid of its zone is greater than the distance to the centroid of its 
nearest neighbor zone, the station is reassigned the label of its nearest neighbor zone. The final 
comparison is depicted in Figure 4, where 642 of the 716 sites (circles) remain in its original 
zone, and only 74 sites (purple symbols) are reassigned to a new zone. This result indicates 
that the GMM basically divides the meteorological stations into correct solar radiation zones 
and that the boundaries determined depending on spatially continuous solar radiation from 
remote sensing inversions are relatively reliable. We also note that most of the stations whose 
zones are changed fall inside the spatial extent of the ten subzones rather than at the edges, 
suggesting that zoning based on spatially continuous solar radiation can effectively avoid the 
influence of individual unrepresentative stations. 

5 Discussion and Conclusion 

The dataset provides the results of the hierarchical system with 5–10 solar radiation zones in 
China. The experiments based on ground observations or spatially continuous estimates of solar 
radiation support the establishment of a hierarchical zoning system. The 5 primary zones 
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Figure 4  Map of manually zoning results of 716 meteorological stations in China based on solar radiation 
data derived from sunshine hours (Note: The symbol of the station indicates that the point is reclassified to 
the zone behind the label rather than the zone corresponding to its location.)  
 
mainly reflect the differences in solar radiation caused by diverse climates, while the 10 
subzones reveal the subtle differences in seasonal variation of solar radiation due to local 
microclimate and topographic influences. In China, the basic geographical units with distinct 
climatic characteristics, such as Sichuan basin, Qinghai-Tibet plateau, Yunnan-Guizhou plateau, 
and Loess plateau, have formed independent solar radiation zones. It is observed that there are 
some similarities between the 10 subzones and the building climate zones. For example, the 
boundaries between III-A and IV-A, IV-A and IV-B, and II-A and II-C-1 are basically consistent 
with the building climate zone boundaries[14, 27, 28], indicating that the 10 subzones also reflect 
the differences in surface heat distribution associated with differences in solar radiation. 

The dataset identifies the precise boundaries of adjacent zones using spatially continuous 
solar radiation estimates, overcoming the shortcomings of the station-based zoning method. 
For instance, considering that Hainan Island and Taiwan Island have obvious differences in 
internal solar radiation characteristics, it is crucial to select an appropriate zoning scheme to 
divide them into different zones (as shown in Figures 2a and 3a). It is likely that Hainan 
Island and Taiwan Island would be considered a single zone if actual division were solely 
based on one or a few observation stations within them. Spatially continuous estimates can 
distinguish the nuances of solar radiation and therefore provide accurate pixel-level zoning 
results, which are important for some specific applications, such as assessing the potential of 
rooftop solar PV in mountainous areas to inform energy sector decisions[5, 6]. Overall, it can 
be concluded that different solar energy utilization strategies should be implemented in the 
northern and southern of Hainan Island and the western and eastern of Taiwan Island. 
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