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Abstract: Carbon dioxide (CO2) is one of the main greenhouse gases in the atmosphere. It plays a 
crucial role in global climate change, of which temporal and spatial patterns have been paid great 
attention to. Taking CO2 concentration as the research object, this study developed a global 
gridded dataset of monthly CO2 concentration with a spatial resolution of 2° × 2.5° from 1992 to 
2020. The time series of CO2 concentration was simulated by an improved sinusoidal model, which 
was calibrated by the remotely-sensed product of tropospheric CO2 concentration from 2002 to 
2012 (AIR×3C2M 005), for each grid cell. Then, field-observed data of CO2 concentration were 
adopted to evaluate the accuracy of our product. The results showed that: (1) the CO2 
concentration of our production was highly consistent with that observed at the stations. Especially, 
it performed well in the fitting (2002–2012: R2 = 0.94, RMSE = 1.34 ppm), reconstruction 
(1992–2001: R2 = 0.92, RMSE = 1.50 ppm) and prediction (2013–2019: R2 = 0.93, RMSE = 1.58 
ppm) of CO2 concentration, respectively. (2) our data showed that the global atmospheric CO2 

concentration exhibited an obvious spatial heterogeneity. The high value regions of CO2 
concentration were mainly located in the northern of North America, while the low values 
dominated middle latitudes of the southern hemisphere. 
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1 Introduction 

With the global economy development, a great deal of fossil fuels has been used which leads 
to a significant increase in carbon dioxide (CO2) emissions. It has a great impact on the 
global climate, ecosystems and economic fields. The Intergovernmental Panel on Climate 
Change (IPCC) Fifth Assessment Report (AR5) states that CO2 and methane are the main 
contributors to global warming (about 88%–90%)[1]. As an important greenhouse gas, the 
increase in the atmospheric concentration of CO2 has a significant heating effect on the 
ground[2,3], which has attracted widespread attention from government departments and the 
scientific community. Exploring, retracing and predicting the changes of CO2 concentration 
over the world are of great practical significance to adopt targeted policies and measures 
dealing with global climate change issues and achieving sustainable socio-economic 
developments. 

Currently, there are three main ways to obtain CO2 observations: ground-based, 
space-based and satellite remote sensing observations[4]. Data from ground-based stations 
have a large time span and high accuracy, which can be used as a benchmark for satellite 
observations. Many scholars used single-site data to represent the global CO2 concentrations, 
which performed well in the studies. However, given the spatial heterogeneity of CO2 
distribution, single-site data was insufficient to present the truth on a global scale. In 
addition, ground observation stations are set up in sparsely populated and complex terrain. 
There are defects, e.g., the difficult construction, high cost of maintenance, small coverage, 
uneven distribution. Moreover, many sites are needed to cooperatively explore the regional 
dynamic change of CO2

[5,6]. Although CO2 concentration can be measured with high 
accuracy, it had certain limitations for obtaining global CO2 concentration data. Space-based 
exploration used aircraft or hot air balloons to make real-time high-altitude CO2 
concentration measurements in areas designated by the Earth System Research Laboratory 
(ESRL)[7,8]. Compared with site observations, CO2 measurement data with a wider spatial 
coverage could be obtained through this method. However, due to the high cost of 
equipment and low timeliness, space-based detection could not acquire data continuously for 
a long time. Remote sensing uses diverse sensors on board satellites to acquire the spectral 
characteristics of atmospheric CO2 which are radiated by the sun and reflected back into 
space through the ground. Tropospheric CO2 observations with long-term, continuous, 
spatiotemporal consistency and high accuracy could be provided for continents and oceans[9]. 
This view has been widely accepted by the academic community. Currently, the atmospheric 
data provided by the Atmospheric Infrared Sounder (AIRS) have been adopted by many 
scholars in studies of atmospheric CO2. With 2378 continuous infrared spectral channels 
(3.7–15.4 μm), the AIRS receives accurate infrared spectral data of land, ocean and 
atmosphere, and provides many hyperspectral and high-precision data including parameters 
of temperature, humidity, clouds, surfaces, and CO2

[10]. By comparing the AIRS data with 
the sounding observations, Divakarla et al. found that the relative error between land and sea 
did not exceed 10%[11]. Since the process of transporting surface CO2 to the atmospheric 
troposphere one takes a few time, the data of AIRS inversion lags behind the real CO2 
concentration. Satellite CO2 data products were derived from the near-infrared spectrum, in 
which they were strongly disturbed by surface atmospheric aerosols. This results in that 
global CO2 data inversion by AIRS have a high degree of confidence only in the middle and 
lower layers of the troposphere[12]. It is urgent to develop a set of global-scale, longtime 
series, and high-precision CO2 concentration data to support global change studies. 
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In these views, a new satellite-based dataset of global atmospheric CO2 concentration was 
developed using an improved sinusoidal model in this study, including monthly and annual 
mean CO2 concentration over the world. First, in order to ensure that satellite remote sensing 
data can accurately capture the concentration of tropospheric CO2, the AIRS satellite remote 
sensing inversion data was validated by ground station observed data. Second, based on the 
improved sinusoidal model, the model was parameterized for each grid cell, and the global 
CO2 simulation was carried out. The simulation results were evaluated by both site 
observations and satellite data, so that to provide reliable data of global CO2 change. 

2 Metadata of the Dataset 

The metadata of the dataset [13] is summarized in Table 1. It includes the dataset full name, 
short name, authors, year of the dataset, temporal resolution, spatial resolution, data format, 
data size, data files, data publisher, and data sharing policy, etc. 

 

Table 1  Metadata summary of the Global atmospheric carbon dioxide concentration simulation grid 
dataset (1992‒2020) 

Items Description 

Dataset full name Global atmospheric carbon dioxide concentration simulation grid dataset (1992‒2020) 

Dataset short name GlobalSimulatedCO2_1992‒2020 

Authors Hou, W. Y. ABE-5925-2021, Hohai University, houhh5425@163.com 
Jin, J. X. ABE-5853-2021, Hohai University, jiaxinking@hhu.edu.cn 

 Yan, T. ABE-5824-2021, Hohai University, 191309010014@hhu.edu.cn 
Liu, Y. ABE-5924-2021, Hohai University, 201301060011@hhu.edu.cn 

Geographical region 60°S–88°N，180°W–180°E Year 1992–2020 

Temporal resolution Monthly CO2 concentration from 1992 to 2020; annual mean CO2 from 1992 to 2020 

Spatial resolution 2° × 2.5° (Lat × Long) Data format   NetCDF (.nc) 

Data size 23.9 MB (After compression)  

Data files (1) Global monthly mean dataset of CO2 concentrations during 1992–2020 
(2) Global annual mean dataset of CO2 concentrations during 1992–2020 

Foundations Ministry of Science and Technology of P. R. China (2018YFA0605402); National Natural 
Science Foundation (41971374) 

Data publisher Global Change Research Data Publishing & Repository, http://www.geodoi.ac.cn 

Address No. 11A, Datun Road, Chaoyang District, Beijing 100101, China 

Data sharing policy Data from the Global Change Research Data Publishing & Repository includes metadata, 
datasets (in the Digital Journal of Global Change Data Repository), and publications (in the 
Journal of Global Change Data & Discovery). Data sharing policy includes: (1) Data are 
openly available and can be free downloaded via the Internet; (2) End users are encouraged to 
use Data subject to citation; (3) Users, who are by definition also value-added service 
providers, are welcome to redistribute Data subject to written permission from the GCdataPR 
Editorial Office and the issuance of a Data redistribution license; and (4) If Data are used to 
compile new datasets, the ‘ten per cent principal’ should be followed such that Data records 
utilized should not surpass 10% of the new dataset contents, while sources should be clearly 
noted in suitable places in the new dataset[14] 

Communication and 
searchable system 

DOI, CSTR, Crossref, DCI, CSCD, CNKI, SciEngine, WDS/ISC, GEOSS 

3 Data Development Methodology 

3.1 Data Sources 

In this paper, the tropospheric CO2 data product (AIRS × 3C2M005) jointly retrieved by 
AIRS and the Advanced Microwave Sounding Unit (AMSU) was used as the reference data 
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to produce the global CO2 concentration dataset. AIRS/AMSU/HSB (the Humidity Sounder 
for Brazil) is a set of advanced atmospheric vertical profile observation instruments from 
infrared to microwave band, which is used to measure atmospheric temperature and provide 
information of atmospheric water vapor distribution, data of cloud, sea, land temperature 
and atmospheric humidity[15]. The adopted data was the third-level monthly average CO2 
data (version 5). The spatial coverage of the data is 60°S–90°N with a spatial resolution of 
2° × 2.5° (latitude × longitude). The data was downloaded from the Goddard Earth Sciences 
Data and Information Services Center (GES DISC) of the National Aeronautics and Space 
Administration (NASA). In addition, the tropospheric CO2 data product during 2010–2017 
(AIRS3C2M 005) retrieved from AIRS was used to compare with the simulated data and site 
observations.  

In our study, the AIRS remote sensing data and the products were evaluated by the 
monthly average CO2 data of the stations. Seven sites were selected, namely Samoa (SMO), 
Mouna Loa (MLO), Variguan (WLG), Asserkrem (ASK), Niwot Ridge (NWR), Monte 
Cimone (CMN), and Plateau Rose (PRS) (Figure 1). The site data were obtained from the 
World Data Center for Greenhouse Gases (WDCGG). The global monthly average CO2 data 
was downloaded from the Global Monitoring Laboratory of the National Oceanic and 
Atmospheric Administration (NOAA GML). 

3.2 Algorithm Principle 

The improved sinusoidal model[15] proposed by the Carbon Cycle Team of NOAA GML was 
adopted in this study. The model can reduce the noise generated from the process of 
estimating the global value due to atmospheric variability at the weather scale and 
measurement time gap. 

The weekly air sample data from the global air sampling network[16] were used by Carbon 
Cycle Team of NOAA GML to calculate the global average surface value[17–20]. The samples 
came from the marine boundary layer (MBL) with well atmospheric mixing. The data could 
be estimated directly without the atmospheric transmission model, which captures the global 
trend with low noise. Global CO2 concentration showed an upward trend and fluctuated with 
season. So, NOAA GML stakeholders chose a combination of quadratic functions and sine 
and cosine functions to represent suitably smooth curves for the MBL data. The specific 
parameters of the model vary with the gas type, site, and sampling frequency[15].The 
calculation formula is as follows: 

 2
1 2 3 2 1 2

1,4

( ) [ sin(2 ) cos(2 )]k k
k

f t a a t a t b kt b kt 


             (1) 

where t denotes time. The model contains three polynomial parameters a1, a2, a3, and eight 
sine and cosine harmonic parameters b2k-1 and b2k (k = 1,2,3,4). 

The model was applied to AIRS and AMSU satellite data products, and the consistency 
between the simulated data and satellite data was evaluated to ensure whether the model was 
also suitable. The AIRS and AMSU satellite data was input into the model, and the 
parameters were determined for each cell in the range of 60°S–88°N. Then, the simulation 
was performed to obtain the CO2 concentration dataset pixel by pixel for this range. In order 
to analyze the interannual trend of CO2 concentration from 1992 to 2020, the annual average 
growth trend of global CO2 concentration was estimated by using Sen’s slope estimator. That 
is, the median slope of all lines of paired points was selected as the slope overall. This 
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method could effectively calculate the change trend and reduce the uncertainty caused by 
outliers. 

4 Data Results and Validation 

4.1 Data description 

The dataset mainly contents two subsets: (1) Global monthly mean CO2 concentration 
dataset during 1992–2020, which includes 29 data files, named as CO2_mon_****.nc. (2) 
Global annual mean CO2 concentration dataset during 1992–2020, which includes 29 data 
files, named as CO2_mean_****.nc.  

4.2 Spatial and Temporal Variabilities of the CO2 Concentration 

The spatial distribution of the average CO2 concentration data over the world from 1992 to 
2020 is shown in Figure 1. Generally, the distribution of CO2 exhibited an obvious spatial 
heterogeneity. The CO2 concentration in the northern hemisphere was generally higher than 
that in the southern hemisphere. The areas with high CO2 concentration were mainly 
distributed in northern North America, eastern Asia and low latitudes of the northern and 
southern hemispheres, while the areas with low CO2 concentration were mainly distributed 
in the middle and high latitudes of the southern hemisphere and parts of Siberia. 

Figure 2 shows the global pattern of the interannual trend of annual average CO2 
concentration from 1992 to 2020. Global CO2 concentration is increasing, but the growth 
rate shows spatial heterogeneity. Overall, the growth rate of CO2 concentration in the 
northern hemisphere was faster than that in the southern hemisphere. The CO2 concentration 
in the high latitudes of the northern hemisphere, such as Siberia and northern North America, 
was increasing rapidly. In contrast, the areas with a slower rate were mainly located in the 
northern South America, central Africa and the low latitudes of the southern and northern 
hemispheres. 

 

 
 

Figure 1  Spatial distribution of the multi-year mean CO2 concentration from 1992 to 2020 
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Figure 2  Spatial distribution of the trends in annual average CO2 concentration from 1992 to 2020 

4.3 Data Validation 

4.3.1 Comparison of Fitting Results with Site Data 

The simulation of CO2 concentration in this study was compared with that from the seven 
stations from 1992 to 2019 (Figure 3). The result showed a significant linear relationship 
between them, indicating that the fitting results were well consistent with the concentration 
of CO2 on the ground. 

Performances of the proposed 
CO2 concentration in this study 
were investigated in the 
reconstruction (1992‒2001), 
fitting (2002‒2012) and 
prediction (2013‒2019) phases, 
respectively, including 
correlation coefficient, root mean 
square error (RMSE) and average 
relative error between the 
observed and simulated data at 
the seven stations (Table 2–4). 
The results showed that this 
dataset was well consistent with 
the observed CO2 concentration 
on the ground in each phase. The 
error between the observed and 
simulated data in the fitting phase 
was the smallest, and RMSE was 
less than 5 ppm, which can well 
represent the ground CO2 
concentration. 

 

 
 

Figure 3  Comparison between the observed and simulated 
CO2 concentration data at the seven stations 
(Notes: SMO, Samoa; MLO, Mouna Loa; WLG, Variguan; ASK, 
Asserkrem; NWR, Niwot Ridge; CMN, Monte Cimone; PRS, Plateau 
Rose, and the same below.) 
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4.3.2 Comparison of Fitting Results, Satellite Data and Station Data 

Three datasets of CO2 concentration, i.e., the simulated data of this study, the AIRS product 
(2010.01–2017.02) and the site observations, were further compared using correlation 
coefficient (r), RMSE, relative error and R2 at the seven stations. The results showed that the 
consistency between our simulated data and the observed data was generally better than that 
between the AIRS data and the observed data, indicating our dataset can well represent the 
real CO2 concentration. 
 
Table 2  Comparison between the observed and simulated monthly average CO2 concentration in the 
reconstruction phase (1992–2001) 

Site 
Mean value (ppm) Average deviation

(ppm) 
Correlation 
coefficient 

RMSE 
(ppm) 

Relative 
error Observed Simulated 

SMO 362.88 362.78 0.10 0.994,4 0.91 0.20% 

MLO 364.33 361.73 2.60 0.969,0 2.98 0.72% 

WLG 365.86 362.96 2.90 0.845,8 2.71 0.63% 

ASK 367.39 359.97 7.43 0.922,5 3.67 0.87% 

NWR 364.78 360.58 4.20 0.913,4 5.22 1.22% 

CMN 364.22 362.98 1.24 0.772,7 4.83 1.21% 

PRS 364.65 363.64 1.02 0.877,7 2.94 0.69% 

 
Table 3  Comparison between the observed and simulated monthly average CO2 concentration in the 
simulation phase (2002–2012) 

Site 
Mean value (ppm) Average deviation 

(ppm) 
Correlation 
coefficient 

RMSE 

(ppm) 
Relative 

error Observed Simulated 

SMO 381.79 382.70 ‒0.91 0.997,3 0.90 0.21% 

MLO 383.66 382.00  1.66 0.970,6 2.21 0.49% 

WLG 383.63 382.57  1.05 0.944,3 2.58 0.57% 

ASK 383.42 382.78  0.64 0.954,7 1.99 0.46% 

NWR 384.22 383.58  0.64 0.916,2 2.64 0.61% 

CMN 383.23 384.22 ‒0.99 0.780,6 4.65 1.06% 

PRS 383.69 383.78 ‒0.10 0.884,9 3.04 0.67% 

 
Table 4 Comparison between the observed and simulated monthly average CO2 concentration in the 
prediction phase (2013–2019) 

Site 
Mean Value (ppm) Average deviation 

(ppm) 
Correlation 
coefficient 

RMSE 

(ppm) 
Relative 

error Observed Simulated 

SMO 400.63 399.92  0.70 0.996,1 1.39 0.28% 

MLO 402.97 401.88  1.09 0.968,8 1.86 0.40% 

WLG 402.99 400.44  2.55 0.925,0 3.68 0.78% 

ASK 402.78 400.85  1.93 0.951,1 3.00 0.61% 

NWR 403.43 401.91  1.52 0.898,8 3.31 0.71% 

CMN 403.37 402.75  0.62 0.718,9 5.02 1.09% 

PRS 401.35 403.87 –2.52 0.832,3 3.65 0.68% 
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5 Discussion and Summary 

It was found that there may be a 
large deviation between the 
simulated and observed results. 
So, it is necessary to determine a 
starting point in order to ensure 
the good consistency between 
the backtracking results and the 
site observations. The growth 
trend of CO2 in each region were 
generally consistent with that of 
the global average CO2. Hence, 
the global average CO2 
(1980–2019) was used as the 
reference data. Since 1985, it 
had been calculated and compared as a segmentation point year by year. The time before and 
after the segmentation point was parameterized and simulated respectively, and then its 
results were compared consistently with the global average to ensure the highest accuracy. 
After inspection, when 1992 was taken as the segmentation point, the R2 of the simulation 
was the highest (0.999,5) and RMSE was the lowest (0.451 ppm). Therefore, the year of 
1992 was adopted as the starting year of this dataset. 

The global tropospheric CO2 concentration product jointly derived from AIRS and AMSU 
was used as reference data for 
parameter calibration of the improved 
sinusoidal estimation model and 
simulation of CO2 concentration pixel 
by pixel. Then, field-observed data of 
CO2 concentration were adopted to 
validate and evaluate the accuracy of 
our product. The dataset shows that 
the atmospheric CO2 concentration 
exhibited an obvious spatial 
heterogeneity over the world. The high value regions of CO2 concentration were mainly 
located in the middle and high latitudes of the northern hemisphere, and the low values 
dominated low latitudes of the southern hemisphere. Comparing the dataset with the site 
observation data, it is found that the two sets of data performed well in backtracking, 
simulation and prediction phases, which can well represent the spatio-temporal distribution 
global CO2 in a long time series. Compared with the original satellite remote sensing data, 
this dataset can be used to study the change of atmospheric CO2 concentration in a longer 
time series. Furthermore, it can improve the limitation that single-site numerical value was 
used to represent global CO2 concentration in modeling at a global scale, and provide data 
support for studies of geography, ecology and other disciplines. 
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Figure 4  Comparison among the CO2 concentration data derived 
from the simulated product of this study, satellite data products 
(AIRS) and site observations 

 

 

Figure 5  Comparison of consistency between simulation 
results and global observation data before and after different 
years as turning points 
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