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Abstract: Under the background of climate change and population expansion, the food supply 
pressure increased. Rice is a temperature-sensitive crop, thus its future yield and growth 
environment will also undergo significant changes with climate changes. This paper used the 
MaxEnt model and the redistribution method to project the planting areas under rice. Through 
combining the planting area and extreme high temperature disasters, we obtained the 
high–temperature exposure to rice. The EPIC model was used to generate the vulnerability curve 
of rice yield loss responding to high-temperature stress. In addition, the yield loss rate under 
different scenarios obtained by high-temperature intensity and vulnerability curves. It was treated 
as the rice yield loss data. The dataset was divided into three parts, rice potential cultivation area 
data, rice high–temperature exposure data, and rice high-temperature yield loss data. The spatial 
resolution of the rice potential cultivation area data and rice high-temperature exposure data is 
0.25°×0.25° , and the spatial resolution of rice high-temperature yield loss data is 0.5°×0.5°. The 
dataset consisted of 21 files in total, and the data size was about 46.8MB. 
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1 Introduction 

The latest IPCC special report pointed out that according to the current global warming rate, 
the global temperature will rise by 1.5 ℃ by 2040[1], which will change the growth 
environment of rice in the future. Without considering the improvement of crops varieties, 
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the cultivation area of rice in the future should be adjusted to the environment. Similarly, the 
global high–temperature disasters on rice will also undergo spatial and temporal changes in 
the future, which necessitate crop distribution, exposure and yield loss data –for rice. 
Therefore, we can intuitively recognize the distribution of rice planting area and the yield 
loss induced by extreme high–temperature under different scenarios, which helps to 
formulate measures to reduce losses according to local conditions[2], and it is of great 
significance to world food security. 

2 Metadata of the Dataset 

The metadata of the Global rice high-temperature disaster risk simulating dataset (2030s, 
2050s)[3] is summarized in Table 1. It includes the dataset full name, short name, authors, 
year of the dataset, temporal resolution, spatial resolution, data format, data size, data files, 
data publisher, and data sharing policy, etc. 
 
Table 1  Metadata summary of the Global rice high-temperature disaster risk simulating dataset (2030s, 
2050s) 

Items Description 

Dataset full name Global rice high-temperature disaster risk simulating dataset (2030s, 2050s) 

Dataset short name GlobalRiceRisk 

Authors Wang, J. A. AAA–6406–2022, Faculty of Geographical Science, Beijing Normal University, 
and Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation 
(Ministry of Education), jwang@bnu.edu.cn  
Su, P. ABH–3399–2021, School of Geographic Science, Qinghai Normal University, 
201947331031@stu.qhnu.edu.cn 
Zhang, A. Y. AAA–6787–2022, Faculty of Geographical Science, Beijing Normal University, 
zay@mail.bnu.edu.cn 
Wang, R. AAE–1120–2019, Faculty of Geographical Science, Beijing Normal University, 
wangr0225@163.com 

Geographical region Global 

Year 2000s, 2030s and 2050s 

Temporal resolution 1970–2000 (2000s), 2016–2035 (2030s) and 2046–2065 (2050s)） 

Spatial resolution The spatial resolution of rice distribution and exposure data is 0.25°0.25°, and the spatial 
resolution of rice vulnerability data is 0.5°0.5° 

Data format .tif   

Data size 46.8 MB   

Data files Rice cultivation area data, rice high-temperature exposure data, and rice high–temperature 
vulnerability data 

Foundation Ministry of Science and Technology of P. R. China (2016YFA0602402) 

Data publisher Global Change Research Data Publishing & Repository, http://www.geodoi.ac.cn 

Address No. 11A, Datun Road, Chaoyang District, Beijing 100101, China 

Data sharing policy 
 

Data from the Global Change Research Data Publishing & Repository includes metadata, 
datasets (in the Digital Journal of Global Change Data Repository), and publications (in the 
Journal of Global Change Data & Discovery). Data sharing policy includes: (1) Data are 
openly available and can be free downloaded via the Internet; (2) End users are encouraged to 
use Data subject to citation; (3) Users, who are by definition also value–added service 
providers, are welcome to redistribute Data subject to written permission from the GCdataPR 
Editorial Office and the issuance of a Data redistribution license; and (4) If Data are used to 
compile new datasets, the ‘ten per cent principal’ should be followed such that Data records 
utilized should not surpass 10% of the new dataset contents, while sources should be clearly 
noted in suitable places in the new dataset[4] 

Communication and 
searchable system 

DOI, CSTR, Crossref, DCI, CSCD, CNKI, SciEngine, WDS/ISC, GEOSS 
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3 Methods 

3.1 Data Collection or Processing 

The original data used in this study, including environment data (topographic and soil 
properties data), crop data (historical rice planting area data) and scenarios data (climate 
data). This paper selected the global digital elevation model (DEM) from USGS and the 
global surface slope data of GAEZ as topographic data. This paper selected global soil 
properties data from ISRIC. The historical rice harvested area data came from EARTHSTAT, 
SPAM 2005 v2.0, and MIRCA2000. The climate data in this paper were from NASA, 
including precipitation, the highest temperature and the lowest temperature. And the 
multi-mode data results are averaged to get the comprehensive results. The detailed data list 
is shown in Table 2. 
 

Table 2  Database information 

Category Name Year 
Temporal 
Resolution

Sources 

Environ- 
ment data 

Global Multi–resolution 
Terrain Elevation Data 
(GMTED2010) 

2010 1 km×1 km
United States Geological Survey (USGS) 
https://topotools.cr.usgs.gov/gmted_viewer/ 

WISE derived soil 
properties on a 30 by 30 
arc–seconds global grid 

2012 30″×30″ 
International Soil Reference and Information 
Centre (ISRIC) 
http://www.isric.org 

Crop data 

①Harvested Area and 
Yield for 175 Crops year 
2000 
②SPAM 2005 v2.0 
③MIRCA2000 

2000 or 
2005 

5′×5′ 

①http://www.earthstat.org/harvested–area– 
yield–175–crops/ 
②http://mapspam.info/maps/ 
③http://www.uni–frankfurt.de/45218031/data_ 
download? 

FAO rice production 
statistics 19602015

Country 
unit and 

subnational 
unit 

http://www.fao.org/faostat/en/#data/QC; 
http://kids.fao.org/agromaps/ 

FAO rice demand statistics 19602015
Country 

unit 
http://www.fao.org/faostat/en/#data/FBS 

FAO demographic data 19602015
Country 

unit 
http://www.fao.org/faostat/en/#data/OA 

FAO GDP statistics 19602015
Country 

unit 
http://www.fao.org/faostat/en/?#data/MK 

Rice growth period 19611990 5′×5′ 
https://nelson.wisc.edu/sage/data–and–models/cr
op–calendar–dataset/index.php 

Scenarios 
data 

NASA’s Climate Data 
Services 19602099 0.25°×0.25° https://cds.nccs.nasa.gov/nex–gddp/ 

Global dataset of gridded 
population and GDP 
scenarios 

20052099 0.25°×0.25°
http://www.cger.nies.go.jp/gcp/population–and–g
dp.html 

Land–Use Harmonization 2 
(LUH2) 19702100 0.25°×0.25° http://luh.umd.edu/data.shtml 

Historical wind speed 
(WorldClim V1.4) 19702000 5′×5′ http://www.worldclim.com/version1 

Wind speed under different 
scenarios 19702099 0.5°×0.5°

https://www.isimip.org/gettingstarted/input–data
–bias–correction/ 

3.2 Methodology 

3.2.1 Estimated Rice Cultivation Distribution 
3.2.1.1 Estimated Potential Distribution of Rice 
This dataset used the MaxEnt model to estimate rice potential distributions. This model is 
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based on the maximum entropy method to simulate the species niche and distribution. The 
input data of the model were the crop distribution samples and the environmental variables. 
Refer to the previous work[5], the selection of samples and environmental variables in this 
paper showed as follows. 

First, we calculated the ratio of historical crop cultivation area. Secondly, we divided the 
ratio into four groups, and the fourth group (ratio≥66%) determined the number of samples 
selected in the other three groups according to the proportion of the cultivation area and the 
number of samples. Besides, we used the randperm function in MATLAB to randomly select 
the specified number of samples in each group. The number of samples was 559 (ratio 
<10%), 768 (10%≤ratio <33%), 541 (33%≤ratio <66%) and 360 (66%≤ratio). 

In order to reduce the impact of random selection of samples, this paper chose 30 sets of 
samples. We calculated rice suitability by these 30 sets of samples, and took the averaged 
results as the final rice suitability. 

This study believed that terrain, climate[6–8] and soil[9–11], topography were the factors that 
affected rice growth. Hence, we chose elevation, climate indicators (22 indicators) and soil 
indicators (20 indicators) as candidate indicators[12]. In order to extract indicators with a 
significant impact on the growth range of rice, we screened the indicators three times. See 
Table 3 for the indicators used in the model. 

 
Table 3  The indicators used in MaxEnt model 

Data Indicators Meaning of indicators 

Climate BIO1 Annual mean temperature 

 BIO2 Mean diurnal range 

 BIO3 Isothermality 

 BIO5 Max temperature of warmest month 

 BIO8 Mean temperature of wettest quarter 

 BIO12 Annual precipitation 

 BIO18 Precipitation of warmest quarter 

 Solar radiation Solar radiation 

 Wind speed Wind speed 

Soil CECS Cation exchange capacity 

 CFRAG Coarse fragments % (> 2 mm) 

 CNrt C/N ratio 

 GYPS Gypsum content 

 ORGC Organic carbon content 

 TAWC Volumetric water content 

 TEB Total exchangeable bases 

Topography DEM digital elevation model (DEM) 

 
3.2.1.2 Estimated Rice Yield Redistribution 
(1) Rice yield estimation 
The relationship between per capita rice demand and per capita GDP was used to calculate 
the amount of rice consumption under different SSP scenario. The fitting function referred to 
previous research mainly including power function linear model[13] and logarithmic linear 
model[14] (see Figure 1 for fitting examples). An example of curve fitting of per capita GDP 
and per capita rice demand was shown in the figure 1. 
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Figure 1  Curve fitting of GDP per capita and per capita annual rice demand 
 

(2) Rice yield redistribution 
The overall idea of redistribution of rice yield can be expressed as a multi-objective 
optimization model where equations 1–4 are established at the same time. 

 D = S + I   (1) 

where, D, S and I represent the country’s rice demand, supply and net import respectively. 

 i,rice , 3i cA A≤    (2) 

where, i,riceA  and , 3i cA  represent the rice harvest area and C3 crop harvest area of the i–th 

grid, respectively. 

 , 1 ,( ) ( )(n 1,2,3 )i n i i n iA Su A Su     ≥  (3) 

where, n represents the number of iterations, n=1 represents the initial situation inferred 
from the change in the suitable zone, and Su represents the suitability. 

 

,

,
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i rice

A
Ir

A
 


  (4) 

where, FAOIr  represents the national rice irrigation rate predicted by FAO, and ,i IrA  and 

,i riceA  represent the rice irrigation area and rice harvest area in grid i, respectively. 

When adjusting the rice harvest area, we followed the following three principles: (1) 
make the country’s rice supply and demand balance; (2) make the country’s rice irrigation 
ratio as close as possible to the FAO forecast value; (3) when increasing (or decreasing) the 
planting area, start from the high suitable area (or start to decrease from the low suitable 
area), until the rice is planted to all the cultivated land in the suitable area (or there is no rice 
planted). Since it is impossible to determine the irrigation ratio within the increase range, it 
is assumed that the irrigation ratio for all the increased areas is the same. Figure 2 showed 
the process in detail. 

3.2.2 Exposure and Vulnerability Estimation Methods 

3.2.2.1 Calculation of Hazard 
The rice exposure to high–temperature was calculated by the high temperature days and the 
accumulated temperature exceeding the rice growth threshold. The rice growth threshold 
was defined as the maximum temperature suitable for rice growth during the rice growth 
period[15] (the growth threshold of rice is 38 ℃). We defined a single-day average  
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Figure 2  The future rice harvest area and yield estimation framework 
 

temperature exceeding 38 ℃ (≥38 ℃) as a high-temperature event for rice, and used the 
cumulative stress value (GHTS) of the high-temperature event during the growth period as 
the high–temperature intensity. 
3.2.2.2 Calculation of Rice Exposure 
The exposure of rice is the spatial superposition of the rice potential distribution area and the 
hazard area. The exposure indicators used in this dataset were the rice harvest area. 
3.2.2.3 Calculation of Rice Vulnerability 
The vulnerability curve is established through binary relationship between the intensity of 
the hazard and the loss of the crop. In this study, the EPIC model was used to construct the 
vulnerability curve of rice through the high-temperature intensity and yield loss rate. 
According to the vulnerability curve and the high-temperature intensity under different 
scenarios, the loss rate of rice under each scenario was obtained. 

The EPIC model is a dynamic model that integrates factors such as climate, soil, moisture, 
and field management, and is often used for crop yield simulation. This paper used the EPIC 
model to calculate the vulnerability curve between the high-temperature intensity and the 
rice yield loss rate. The equations are as follows. 

The high temperature disaster intensity index (HSI) in this study was defined as 

 1

(1 )
n

i
i

max

TS TS

TS
HSI

TS


 




 (5) 

where, TSi represents the temperature stress value on the i–th day, n represents the number of 
days during the growth period, TS represents the cumulative temperature stress during the 
growth period under a certain scenario, and TSmax represents the potential maximum value of 
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the cumulative stress during the growth period.  
The yield loss rate (YL) in this study was defined as 

 100%max

max

Y Y
YL

Y


   (6) 

where, Y represents the simulated output under a certain scenario, and Ymax represents the 
simulated output under the optimal scenario (TS=0). 

According to the above equations, the HSI and the corresponding YL were used to fit the 
vulnerability curve through the logistics regression equation. The fitting equation used in 
this study was: 

 
( / (1+ ( )) / (1+ ))

( / (1+ ( )) /

–

1 )– ( + )

a b exp c HSI a b
YL d

a b exp c a b

 
 


 (7) 

where, a, b, c, d are curve function parameters. 
3.2.2.4 Calculation of Rice Yield Loss 
In the exposed area, the probability density curve of the high-temperature disaster intensity 
was calculated by using the information diffusion theory, and combined it with the 
vulnerability curve, the probability density curve of the rice yield loss rate was obtained. 
Then, we calculated its loss expectation to reflect the average state of rice yield loss induced 
by high temperature disasters. 

The cumulative high-temperature stress value in a certain period was simulated by EPIC, 
and the annual high-temperature disaster intensity index (HSI) was calculated (Equation 5). 
Taking this data as an information diffusion sample, the probability density distribution was 
estimated by using the normal diffusion method. The specific calculation process is as 
follows: 

Let U={u1, u2,…,un} be the discrete universe containing the possible values of HSI, the 
value range of HSI is 0 to 1, and the resolution of the universe is 0.0001, so 
U={0,0.0001 ,0.0002,…,1}. The information carried by the HSI in each grid is diffused into 
each ui through the information diffusion function (Equation 8). 

 

2

2

( )1
( )

2 2
k i

k i
HSI u

f u exp
h h

 
   

    
(8) 

where, k is the code of each grid, h is the normal diffusion coefficient, which can be 
calculated by Equation 9. 

 

0.8146( ), 5

0.5960( ), 6

0.4560( ), 7

0.3860( ), 8

0.3362( ), 9

0.2986( ), 10

2.8651 , 11
1

b a m

b a m

b a m

b a m
h

b a m

b a m

b a
m

n

 
  
  


  
 

  


 
≥
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where a and b are the minimum and maximum values of HSI, respectively, and m is the 
number of samples. Then the information accumulation and normal information distribution 
of the sample can be calculated by Equation 10 and Equation 11, respectively. 

 1

( )
n

k k i
i

C f u

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(10) 
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( )

( , ) k i
k j

k

f u
F HSI u

C
  (11) 

where, Ck is the information accumulation of each kth sample, F(HSIk, uj) is the normalized 
information distribution of HSI, for each point uj, add all normalized information to get the 
HSI from the given sample at uj information gain. The information gain is shown in 
Equation 12. 

 
1

( ) ( , )
m

j i j
j

q u F HSI u


   (12) 

The diffusion information of the sample was obtained by summing q(ui) (Equation 13): 

 
1

( )
n

i
i

Q q u


   (13) 

Then calculated the probability density distribution of HSI (Equation 14): 

 
( )

( ) i
i

q u
p u

Q
  (14) 

Defined the probability density distribution of HSI as the expected value of the yield loss 
rate of rice in a certain period (Equation 15). 

 [ ( ) ]j jE p u u   (15) 

where, p(uj) is the estimated probability value when the high-temperature disaster intensity 
is uj. 

3.3 Technical Route 

The dataset was divided into three parts: rice potential cultivation area data, rice 
high-temperature exposure data, and rice yield loss data. Among them, the rice potential 
cultivation area data was calculated under the natural and socio-economic scenarios, the rice 
high-temperature exposure data was calculated by the hazard and the rice planting area. The 
rice yield loss data was calculated from the rice vulnerability curve, which was simulated by 
the EPIC model. The detailed process was shown in Figure 3. 

 

 

Figure 3  Data producing technical route 
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4 Data Results and Validation 

4.1 Data Composition 

The dataset was divided into 1970–2000 (historical), 2016–2035 (near-term), and 
2046–2065 (mid-term). The scenarios were divided into three combinations of rcp2.6–ssp1, 
rcp4.5–ssp2 and rcp8.5–ssp3. 

Data spatial resolution: The spatial resolution of rice distribution and exposure data is 
0.25°0.25°, and the spatial resolution of rice vulnerability data is 0.5°0.5°. 

Data format: GeoTIFF. 

4.2 Data Products 

4.2.1 Display of Rice Cultivation Area Data 

In this paper, the MaxEnt model was used to simulate the natural suitable areas of rice, and 
on this basis, the supply and demand allocation of national units was carried out, and finally 
the rice planting area under different scenarios was obtained and mapped (Figure 4). 
Compared with the historical period, under the RCP8.5–SSP3 scenario, the planting area of 
rice in mid-term showed a decreasing trend, with the most obvious decrease in planting area 
in South America and the Indian peninsula. 

4.2.2 Display of Rice High-temperature Exposure Data 

The rice planting area and the extreme high-temperature hazard area were superimposed to 
obtain the rice exposure to high-temperature under each scenario, and mapped (Figure 5). 
Compared with the historical period, under the RCP8.5–SSP3 scenario, the area of rice 
exposure to high temperature will generally increase in the mid-term, with the most 
significantly in Africa and southern China. 

4.2.3 Display of Rice High-temperature Vulnerability Data 

Combining the rice vulnerability curve with the high-temperature hazard, the yield loss ratio 
of rice caused by high-temperature under each scenario was obtained and mapped (Figure 6). 
Compared with the historical period, under the RCP8.5–SSP3 scenario, the loss of rice in the 
mid-term increased significantly. 

4.3 Data Validation 

This dataset was calculated based on hazard (high temperature events) and hazard bearing 
body (rice planting area). The hazard was calculated from different climatic models from 
CMIP5. The availability of these data has been widely proven[16]. The calculation processes 
of rice planting area were divided into rice potential distribution and rice planting 
redistribution. The process of redistribution was based on the historical rice harvest data, so 
it is difficult to verify its accuracy. Therefore, the accuracy verification of this dataset mainly 
focused on the verification of the rice potential distribution. In the previous research, we 
verified the suitable area by remote sensing image classification and other methods[6], which 
proved the rationality of the data. Here we would discuss the random selection of samples in 
more details. 

When the number of random sample groups was more than 30, the uncertainty reduction 
was not significant. Therefore, considering the reduction of uncertainty and efficiency, we 
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chose to set the number of sample groups to 30. The standard deviations of 30 random 
sample groups were spatially mapped, as shown in Figure 7. 

 

 
(a) The historical distribution map                     (b) Mid-term under RCP8.5–SSP3 scenario map 

Figure 4  Rice planting distribution of historical period and mid-term under the RCP8.5–SSP3 scenario  

 

 
(a) The historical distribution map                    (b) Mid-term under RCP8.5–SSP3 scenario map 

Figure 5  Map of rice exposure to extreme high temperature hazard 
 

 
(a) The historical distribution map                    (b) Mid-term under RCP8.5–SSP3 scenario map 

Figure 6  Map of Rice yield loss caused by high-temperature hazard 
 

The figure showed that the areas with large standard deviations were mainly concentrated 
in the Pamirs and Asia Minor Peninsula, indicating that the simulation results of rice 
distribution in these regions were quite different among the sample groups. Due to historical 
rice planting area in these two regions was relatively small, so it had little effect on the 
overall simulation results. 
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5 Discussion and Conclusion 

This dataset used the MaxEnt model and redistribution method to obtained the distribution 
of rice planting. Through remote sensing classification, ROC curve and other methods, this 
paper verified the validity of the rice distribution prediction. By calculating the hazed 
intensity caused by future high temperature event, and combined it with the crop distribution, 
we obtained rice exposure to high-temperature data. Using the EPIC model to simulate the 
yield loss rate of rice under different intensities of high temperature stress, we obtained the 
vulnerability curve of rice facing high-temperature hazard, and then we obtained the rice 
yield loss rate. 

 

 

Figure 7  Map of spatial distribution of standard deviations (30 sample groups) 
 

This dataset comprehensively considered the impacts of the natural and socio-economic 
factors to estimate the future rice planting distribution. On this basis, we calculated exposure 
and vulnerability with consideration the dual dynamic changes of crop and hazard. On the 
one hand, this dataset has significance for future rice planting and food security research. On 
the other hand, it also has important value for climate change impact assessment. 
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