参考文献:
     [1] Mitsch, W. J., Gosselink, J. G. Wetlands [M]. 5th Edition. New York: John Wiley & Sons Inc., 2015.
     [2] Zhang, Q. J., Wang, Z. S., Xia, S. X., et al. Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones [J]. Science of the Total Environment, 2022: 822.
     [3] 张全军, 张广帅, 万松贤等. 鄱阳湖植食越冬候鸟粪便对洲滩湿地薹草枯落物分解过程及碳、氮、磷释放的影响[J]. 湖泊科学, 2019, 31(3): 814-824.
     [4] 张全军, 张广帅, 于秀波等. 鄱阳湖湿地优势植物枯落物的分解速率及碳、氮、磷释放动态特征[J]. 生态学报, 2020, 40(24): 8905-8916.
     [5] Cornelissen, J. H. C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types [J]. The Journal of Ecology, 1996, 84(4): 573.
     [6] 张全军, 于秀波, 张广帅. 鄱阳湖湿地3种优势植物枯落物分解过程及碳氮同位素分异特征[J]. 湖泊科学, 2023, 35(5): 1694-1704.
     [7] Kramer, M. G., Sollins, P., Sletten, R. S. et al. N isotope fractionation and measures of organic matter alteration during decomposition [J]. Ecology, 2003, 84(8): 2021-2025.
     [8] Jiang, C. M., Yu, W. T. Combined influence of external nitrogen and soil contact on plant residue decomposition and indications from stable isotope signatures [J]. Environmental Science and Pollution Research, 2019, 26(7): 6791-6800.
     [9] 陈清, 王义东, 郭长城等. 天津沼泽湿地芦苇叶片的碳稳定同位素比值分布特征及其环境影响因素[J]. 植物生态学报, 2015, 39(11): 1044-1052.
     [10] 张洛梓. 天津三大芦苇湿地碳,氮稳定同位素特征及其对环境变化的响应[D]. 天津: 天津师范大学, 2025.
     [11] 张全军, 于秀波, 钱建鑫等. 鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征[J]. 生态学报, 2012, 32(12): 3656-3669.
     [12] 《鄱阳湖研究》编委会. 鄱阳湖研究[M]. 上海: 上海科学技术出版社, 1988.
     [13] 刘信中, 胡斌华. 江西南矶山湿地自然保护区综合科学考察[M]. 北京: 中国林业出版社, 2005.
     [14] 张全军, 夏少霞, 刘宇等. 鄱阳湖不同高程梯度下湿地植物和土壤碳氮磷及微量元素数据集[J]. 中国科学数据, 2025, 10(1): 255-265.
     [15] Ziegler, F., Kogel, I., Zech, W. Alteration of gymnosperm and angiosperm lignin during decomposition in forest humus layers [J]. Zeitschrift Für Pflanzenernährung Und Bodenkunde, 1986, 149(3): 323-331.
     [16] Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems [J]. Ecology, 1963, 44(2): 322-331.
     [17] Wider, R. K., Lang, G. E. A critique of the analytical methods used in examining decomposition data obtained from litter bags [J]. Ecology, 1982, 63(6): 1636-1642.
     [18] Liao, C. Z., Luo, Y. Q., Fang, C. M., et al. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary [J]. Oecologia, 2008, 156(3): 589-600.
     [19] Wrubleski, D. A., Murkin, H. R., Van Der Valk, A, G., et al. Decomposition of emergent macrophyte roots and rhizomes in a northern prairie marsh [J]. Aquatic Botany, 1997, 58(2): 121-134.
     [20] Connin, S. L., Feng, X., Virginia, R. A. Isotopic discrimination during long-term decomposition in an arid land ecosystem [J]. Soil Biology and Biochemistry, 2001, 33(1): 41-51.