数据集(库)目录

出版期刊|区域分类

2021年第12期
2019年第02期
数据详情

中亚咸海及周边区域风蚀模量数据集(1990-2020)


余瑶姚峰
中国科学院新疆生态与地理研究所,乌鲁木齐830011

DOI:10.3974/geodb.2025.12.01.V1

出版时间:2025年12月

网页浏览次数:27       数据下载次数:0      
数据下载量: 无      数据DOI引用次数:

关键词:

多源遥感,RWEQ模型,咸海,年际变化

摘要:

咸海萎缩导致的生态危机是中亚地区面临的重大环境挑战。为揭示该区域土壤风蚀的演变规律,本研究运用MODIS植被指数、ESA-CCI土地覆盖数据、SRTM高程资料以及ERA5-Land再分析气象数据,基于修订版风蚀方程(RWEQ),在Google Earth Engine(GEE)平台中,构建了中亚咸海及周边区域风蚀模量数据集(1990-2020)。该数据集空间分辨率为1 km,时间分辨率为1年。将模拟结果与咸海沙尘监测站(2000–2005年)记录的粉尘通量实测数据进行对比,结果显示模拟风蚀强度与实地观测在空间格局上具有良好一致性,确认了数据集在刻画区域风蚀动态方面的可信度。数据集存储为.tif格式,由31个文件组成,数据量为260 MB(压缩为1个文件,166 MB)。

基金项目:

新疆维吾尔自治区(2024E02030,PT2406)

数据引用方式:

余瑶, 姚峰. 中亚咸海及周边区域风蚀模量数据集(1990-2020)[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2025. https://doi.org/10.3974/geodb.2025.12.01.V1.

参考文献:


     [1] Micklin, P. The past, present, and future Aral Sea [J]. Lakes & Reservoirs: Research & Management, 2010, 15(3): 193-213.
     [2] Gaybullaev, B., Chen, S. C., Kuo, Y. M. Large-scale desiccation of the Aral Sea due to over-exploitation after 1960 [J]. Journal of Mountain Science, 2012, 9: 538-546.
     [3] Indoitu, R., Orlovsky, N., Orlovsky, L. Dust emission and environmental changes in the dried bottom of the Aral Sea [J]. Aeolian Research, 2015, 17: 101-115.
     [4] Shibuo, Y., Jarsjö, J., Destouni, G. Hydrological responses to climate change and irrigation in the Aral Sea drainage basin [J]. Geophysical Research Letters, 2007, 34(21): L21406.
     [5] 何明珠, 高鑫, 赵振勇等. 咸海生态危机:荒漠化趋势与生态恢复防控对策[J]. 中国科学院院刊, 2021, 36(2): 130-140.
     [6] 邓铭江, 龙爱华. 咸海流域水文水资源演变与咸海生态危机出路分析[J]. 冰川冻土, 2011, 33(6): 1363-1375.
     [7] Destouni, G., Jaramillo, F., Prieto, C. Hydroclimatic shifts driven by human water use for food and energy production [J]. Nature Climate Change, 2013(3): 213-217.
     [8] Kristopher, D. W. Nature–society linkages in the Aral Sea region [J]. Journal of Eurasian Studies, 2013, 4(1): 18-33.
     [9] 勒斯木初. 1980-2015年西北地区土壤风蚀评估与防风固沙服务流研究[D]. 西安: 长安大学, 2019.
     [10] Zhang, Q., Gu, F., Zhang, S.et al. Spatiotemporal variation in wind erosion in Tarim River Basin from 2010 to 2018 [J]. Land, 2024, 13(3): 330.
     [11] Jiang, H., Gao, W., Liu, B. et al. Quantifying soil wind erosion attribution in Inner Mongolia’s desert grassland [J]. Sci entific Reports, 2025(15): 14319.
     [12] Borrelli, P., Robinson, D.A., Panagos, P.et al. Land use and climate change impacts on global soil erosion by water (2015-2070) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(36): 21994-22001.
     [13] Jiang, L. L., Jiapaer, G. L., Bao, A. M.et al. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia [J]. Ecological Indicators, 2019, 104: 195-208.
     [14] 林锦阔. 河西地区土壤侵蚀时空分异及其驱动因素[D]. 兰州: 兰州大学, 2020.
     [15] Li, J. Y., Yang, X. C., Jin Y. X.et al. Monitoring and analysis of grassland desertification dynamics using Landsat images in Ningxia [J]. China, Remote Sensing of Environment, 2013, 138: 19-26.
     [16] Evans, J., Geerken, R. Discrimination between climate and human-induced dryland degradation [J]. Arid Environ, 2004, 57(4): 535-554.
     [17] Chen, Z., Liu, J., Hou, X., et al. Detection and attribution of greening and land degradation of Dryland Areas in China and America [J]. Remote Sensing, 2023, 15(10): 2688.
     [18] Borrelli, P., Lugato, E., Montanarella, L.et al. A new assessment of soil loss due to wind erosion in European agricultural soils using a quantitative spatially distributed modelling approach [J]. Land Degradation & Development, 2017, 28(1): 335-344.
     [19] Fryrcar, D. W. , Chen, W. N. Lester C .Revised wind erosion equation [J].Annals of Arid Zone, 2001, 40(3): 265-279.

数据下载:

序号 数据名 数据大小 操作
1 ASSR_WEMD_1990-2020.rar 170851.62KB
主管单位