数据集(库)目录

出版期刊|区域分类

2021年第12期
2019年第02期
数据详情

北半球风云卫星植被生长季物候参数逐年数据集(2011-2019)


王宁1,2吴伶2焦全军*1黄文江1,3张兵1,3
1 中国科学院空天信息创新研究院,遥感与数字地球全国重点实验室,北京1000942 中国地质大学(北京)人工智能学院,北京1000833 中国科学院大学,北京100049

DOI:10.3974/geodb.2025.12.05.V1

出版时间:2025年12月

网页浏览次数:23       数据下载次数:0      
数据下载量: 无      数据DOI引用次数:

关键词:

北半球,植被生长季,风云卫星,动态阈值法,

摘要:

植被生长季作为陆地生态系统响应气候变化的敏感指示器,其关键参数的准确监测对揭示植被-环境相互作用机制、评估碳汇功能及理解全球气候变化生态效应具有重要意义。本数据集基于长时序的FY-3B卫星NDVI数据,利用双基线动态阈值法获取北半球2011-2019年植被生长季物候参数信息,包括生长季的起始日、终止日和日数。数据集内容包括:(1)2011-2019年逐年的植被生长季物候参数数据;(2)多年平均的生长季物候参数数据。数据集的空间分辨率为0.05°。数据集存储为.tif格式,由30个数据文件组成,数据量为652 MB(压缩为1个文件,102 MB)。

基金项目:

国家气象局(FY-APP);国家自然科学基金(42071330)

数据引用方式:

王宁, 吴伶, 焦全军*, 黄文江, 张兵. 北半球风云卫星植被生长季物候参数逐年数据集(2011-2019)[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2025. https://doi.org/10.3974/geodb.2025.12.05.V1.

参考文献:


     [1]Wang, Y. P., Liu, Q. Y., Li, R., et al. Remote sensing of vegetation phenology in the northern hemisphere from multi-channel passive microwave measurements of Chinese FengYun-3D satellite [J]. Remote Sensing of Environment, 2025, 330: 114997.
     [2]Berra, E. F., Gaulton, R. Remote sensing of temperate and boreal forest phenology: a review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics [J]. Forest Ecology and Management, 2021, 480: 118663.
     [3]Xie, Z. Y., Zhu, W. Q., He, B. K., et al. A background-free phenology index for improved monitoring of vegetation phenology [J]. Agricultural and Forest Meteorology, 2022, 315: 108826.
     [4]侯学会, 牛铮, 高帅等. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测[J]. 农业工程学报, 2013, 29(1): 142-150.
     [5]Xu, W. F., Ma, H. Q., Wu, D. H., et al. Assessment of the daily cloud-free MODIS snow-cover product for monitoring the snow-cover phenology over the Qinghai-Tibetan Plateau [J]. Remote Sensing, 2017, 9(6): 585.
     [6]Shao, Q., Huang, C., Xiao, Y. J., et al. Selecting of global phenological field observations for validating coarse AVHRR-derived forest phenology products based on spatial heterogeneity and temporal consistency [J]. Ecological Informatics, 2025: 103216.
     [7]Zhang,M., Chen, L., Xu., N., et al. Influences of Earth incidence angle on FY-3/MWRI SST retrieval and evaluation of reprocessed SST [J]. Journal of Tropical Meteorology, 2024, 30(3): 230-240.
     [8]张鹏, 于红博, 张巧凤等. FY-3B/3C 和 AMSR2 土壤含水量产品在锡林郭勒草原地区的适用性评价[J]. 中国农业气象, 2023, 44(3): 238-251.
     [9]周舟, 朱灵龙, 张永宏等. 基于 FY-3B 被动微波数据的青藏高原降尺度机器学习雪深反演[J]. 冰川冻土, 2024, 46(2): 539-554.
     [10]D’Odorico, P., Gonsamo, A., Gough, C. M., et al. The match and mismatch between photosynthesis and land surface phenology of deciduous forests [J]. Agricultural and Forest Meteorology, 2015, 214: 25-38.
     [11]Xian, D., Zhang, P., Gao, L., et al. Fengyun meteorological satellite products for earth system science applications [J]. Advances in Atmospheric Sciences, 2021, 38(8): 1267-1284.
     [12]Pearson, R. K., Neuvo, Y., Astola, J., et al. Generalized hampel filters [J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 87.
     [13]Li, S., Xu, L., Jing, Y. H., et al. High-quality vegetation index product generation: a review of NDVI time series reconstruction techniques [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102640.
     [14]White, M. A., Thornton, P. E., Running, S. W. A continental phenology model for monitoring vegetation responses to interannual climatic variability [J]. Global Biogeochemical Cycles, 1997, 11(2): 217-234.
     [15]Garrity, S. R., Bohrer, G., Maurer, K. D., et al. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange [J]. Agricultural and Forest Meteorology, 2011, 151(12): 1741-1752.
     [16]Zhang, J., Zhao, J. J., Wang, Y. Q., et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 1-16.
     [17]邵亚婷, 王卷乐. 蒙古国植被物候数据集(2001-2019)研发[J]. 全球变化数据学报(中英文), 2022, 6(2): 241-248.
     [18]Zhou, L., Zhou, W., Chen, J. J., et al. Land surface phenology detections from multi-source remote sensing indices capturing canopy photosynthesis phenology across major land cover types in the Northern Hemisphere [J]. Ecological Indicators, 2022, 135: 108579.
     [19]Jiang, B. H., Chen, W., Chen, S. Y., et al. Comparison of the capability and performance of “photosynthesis” and “structure” indices in retrieving vegetation phenology in the Northern Hemisphere [J]. GIScience & Remote Sensing, 2025, 62(1): 2473127.

数据下载:

序号 数据名 数据大小 操作
1 FY_GS_2011-2019.rar 104686.28KB
主管单位