References:
     [1]Wang, Y. P., Liu, Q. Y., Li, R., et al. Remote sensing of vegetation phenology in the northern hemisphere from multi-channel passive microwave measurements of Chinese FengYun-3D satellite [J]. Remote Sensing of Environment, 2025, 330: 114997.
     [2]Berra, E. F., Gaulton, R. Remote sensing of temperate and boreal forest phenology: a review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics [J]. Forest Ecology and Management, 2021, 480: 118663.
     [3]Xie, Z. Y., Zhu, W. Q. , He, B. K., et al. A background-free phenology index for improved monitoring of vegetation phenology [J]. Agricultural and Forest Meteorology, 2022, 315: 108826.
     [4]Hou, X. H., Niu, Z., Gao, S., et al. Monitoring vegetation phenology in farming-pastoral zone using SPOT-VGT NDVI data [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 142-150.
     [5]Xu, W. F., Ma, H. Q. , Wu, D. H., et al. Assessment of the daily cloud-free MODIS snow-cover product for monitoring the snow-cover phenology over the Qinghai-Tibetan Plateau [J]. Remote Sensing, 2017, 9(6): 585.
     [6]Shao, Q., Huang, C., Xiao, Y. J., et al. Selecting of global phenological field observations for validating coarse AVHRR-derived forest phenology products based on spatial heterogeneity and temporal consistency [J]. Ecological Informatics, 2025: 103216.
     [7]Zhang, M., Chen, L., Xu., N., et al. Influences of Earth incidence angle on FY-3/MWRI SST retrieval and evaluation of reprocessed SST [J]. Journal of Tropical Meteorology, 2024, 30(3): 230-240.
     [8]Zhang, P., Yu, H. B., Zhang, Q. F., et al. Applicability evaluation of FY-3B/3C and AMSR2 soil moisture products in Xilingol grassland [J]. Chinese Journal of Agrometeorology, 2023, 44(3): 238-251.
     [9]Zhou, Z., Zhu, L. L., Zhang, Y. H., et al. Downscaling machine learning snow depth inversion on the Qinghai-Xizang Plateau based on FY-3B passive microwave data [J]. Journal of Glaciology and Geocryology, 2024, 46(2): 539-554.
     [10]D’Odorico, P., Gonsamo, A., Gough, C. M., et al. The match and mismatch between photosynthesis and land surface phenology of deciduous forests [J]. Agricultural and Forest Meteorology, 2015, 214: 25-38.
     [11]Xian, D., Zhang, P., Gao, L., et al. Fengyun meteorological satellite products for earth system science applications [J]. Advances in Atmospheric Sciences, 2021, 38(8): 1267-1284.
     [12]Pearson, R. K., Neuvo, Y., Astola, J., et al. Generalized hampel filters [J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 87.
     [13]Li, S., Xu, L., Jing, Y. H., et al. High-quality vegetation index product generation: a review of NDVI time series reconstruction techniques [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102640.
     [14]White, M. A., Thornton, P. E., Running, S. W. A continental phenology model for monitoring vegetation responses to interannual climatic variability [J]. Global Biogeochemical Cycles, 1997, 11(2): 217-234.
     [15]Garrity, S. R., Bohrer, G., Maurer, K. D., et al. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange [J]. Agricultural and Forest Meteorology, 2011, 151(12): 1741-1752.
     [16]Zhang, J., Zhao, J. J., Wang, Y. Q., et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 1-16.
     [17]Shao, Y. T., Wang, J. L. Vegetation Phenology Dataset in Mongolia [J]. Journal of Global Change Data & Discovery, 2022, 6(2): 241-248.
     [18]Zhou, L., Zhou, W., Chen, J. J., et al. Land surface phenology detections from multi-source remote sensing indices capturing canopy photosynthesis phenology across major land cover types in the Northern Hemisphere [J]. Ecological Indicators, 2022, 135: 108579.
     [19]Jiang, B. H., Chen, W., Chen, S. Y., et al. Comparison of the capability and performance of “photosynthesis” and “structure” indices in retrieving vegetation phenology in the Northern Hemisphere [J]. GIScience & Remote Sensing, 2025, 62(1): 2473127.