参考文献:
[1] Fang, H., Baret, F., Plummer, S., et al. An overview of global Leaf Area Index (LAI): methods, products, validation, and applications [J]. Reviews of Geophysics, 2019, 57(3): 739-799.
     [2] 刘洋, 刘荣高, 陈镜明等. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013, 15(5): 734-743.
     [3] Chen, J. M., Black, T. A. Defining leaf area index for non-flat leaves [J]. Plant, Cell & Environment, 1992, 15(4): 421-429.
     [4] GCOS. The Global Observing System For Climate Implementation Needs [R], 2016.
     [5] Xiao, Z., Liang, S., Wang, J., et al. Use of general regression neural networks for generating the glass leaf area index product from time-series MODIS surface reflectance [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 209-223.
     [6] Baret, F., Hagolle, O., Geiger, B., et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION [J]. Remote Sensing of Environment, 2007, 110(3): 275-286.
     [7] Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., et al. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data [J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D24): 32257-32275.
     [8] Chen, C., Park, T., Wang, X., et al. China and India lead in greening of the world through land-use management [J]. Nat Sustain, 2019, 2(2): 122-129.
     [9] Zhang, Y., Hu Z., Wang, J., et al. Temporal upscaling of MODIS instantaneous FAPAR improves forest gross primary productivity (GPP) simulation [J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 121.
     [10] Fang, H., Zhang, Y., Wei, S, et al. Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China [J]. Remote Sensing of Environment, 2019, 233: 111377.
     [11] 马培培, 李静, 柳钦火等. 中国区域MuSyQ叶面积指数产品验证与分析 [J]. 遥感学报, 2018, 23(6): 1232-1252.
     [12] Yuan, H., Dai, Y., Xiao, Z., et al. Reprocessing the MODIS leaf area index products for land surface and climate modelling [J]. Remote Sensing of Environment, 2011, 115(5): 1171-1187.
     [13] Wang, J., Yan, K., Gao, S., et al. Improving the quality of MODIS LAI products by exploiting spatiotemporal correlation information [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-19.
     [14] Zhang, Y., Fang, H., Wang, Y., et al. Variation of intra-daily instantaneous FAPAR estimated from the geostationary Himawari-8 AHI data [J]. Agricultural and Forest Meteorology, 2021, 307: 108535.
     [15] Pu, J., Yan, K., Gao, S., et al. Improving the MODIS LAI compositing using prior time-series information [J]. Remote Sensing of Environment, 2023, 287.
     [16] 曾也鲁, 李静, 柳钦火. 全球LAI地面验证方法及验证数据综述[J]. 地球科学进展, 2012, 27(2): 165-174.
     [17] Weiss, M., Baret, F., Block, T., et al. On line validation exercise (OLIVE): a web based service for the validation of medium resolution land products. application to FAPAR products [J]. Remote Sensing, 2014, 6(5): 4190-4216.