Dataset List

Vol.|Area

Oceanic region
Data Details

Meteorological Observation Dataset from HL_RS_TS


Bai Junhua1,2Xiao Qing1Liu Qinhuo1Xu Ziwei2LIU Shaomin2
1State Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China2Beijing Normal University,Beijing 100088,China

DOI:10.3974/geodb.2020.09.12.V1

Published:Dec. 2020

Visitors:446       Data Files Downloaded:7      
Data Downloaded:764.07 MB      Citations:

Key Words:

Weather-observation,Radiation,Meteorology,Soil,Remote Sensing Technology and Application

Abstract:

Huailai Remote Sensing Test Site (HL_RS_TS), located on the border of Beijing city and Zhangjiakou, Hebei Province at 115º47ʹ32.4ʹʹ E, 40º21ʹ26.8ʹʹ N. The meteorological observation dataset from HL_RS_TS is the data collection from January 1 to Novembers 5, 2014, and January 1, 2015, to December 31, The dataset consists of the following data: (1) wind speed, atmospheric temperature, and humidity(3 m, 5 m, 10 m, 15 m, 20 m, 30 m, 40 m above ground),wind direction(10 m above ground)、rainfall(3m above ground);(2)Soil temperature, soil humidity(2 cm、4 cm、10 cm、20 cm、40 cm、80 cm、120 cm 、160cm underground)soil heat flow data(6 cm underground);(3)four-component radiation data(4 m above ground)、photosynthetically active radiation data(4m above ground), surface radiation temperature (SST) data(3.5 m, 8 m above ground). The dataset is archived in .xlsx data format and composed of 6 data files with data size of 110 MB (compressed to one single file with 109 MB).

Foundation Item:

Chinese Academy of Sciences (2018); State key laboratory of Remote Sensing Science and Chinese Academy of Sciences (2014-2018)

Data Citation:

Bai Junhua, Xiao Qing, Liu Qinhuo, Xu Ziwei, LIU Shaomin.Meteorological Observation Dataset from HL_RS_TS[J/DB/OL]. Digital Journal of Global Change Data Repository, 2020. DOI: 10.3974/geodb.2020.09.12.V1.

References:

Bai Junhua, Xiao Qing, Liu Qinghuo, Wen Jianguang. The Research of Constructing the Target Ranges to Validate Remote Sensing Product. Remote Sensing Technology and Application, 2015, 30(3):573-578.
     

Data Product:

ID Data Name Data Size Operation
1 HL_RS_TS_2014-2018.rar 111773.08KB
Co-Sponsors
Superintend