References:
     [1] Rosa, L., Chiarelli, D. D., Sangiorgio M., et al. Potential for sustainable irrigation expansion in a 3 ℃ warmer climate [J]. Proceedings of the National Academy of Sciences, 2020, 117(47): 29526-29534.
     [2] Yadav, R., Dwivedi, B., Prasad, K., et al. Yield trends, and changes in soil organic-C and available NPK in a long-term rice–wheat system under integrated use of manures and fertilizers [J]. Field Crops Research, 2000, 68(3): 219-246.
     [3] Ghosh, A., Bhattacharyya, R., Meena, M., et al. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol [J]. Soil and Tillage Research, 2018, 177: 134-144.
     [4] Guo, Z., Han, J., Li, J., et al. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure [J]. PLoS ONE, 2019, 14(1): e0211163.
     [5] Kirschbaum, M. U. F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? [J]. Biogeochemistry, 2000, 48(1): 21-51.
     [6] Post, W. M., Emanuel, W. R., Zinke, P. J., et al. Soil carbon pools and world life zones [J]. Nature, 1982, 298(5870): 156-159.
     [7] Wang, B., Gray, J. M., Waters, C. M., et al. Modelling and mapping soil organic carbon stocks under future climate change in south-eastern Australia [J]. Geoderma, 2022, 405.
     [8] Orgill, S. E., Condon, J. R., Conyers, M. K., et al. Sensitivity of soil carbon to management and environmental factors within Australian perennial pasture systems [J]. Geoderma, 2014, 214: 70-79.
     [9] Wenyi, S., Shengli, G. Spatial distribution of soil organic carbon and its influencing factors in small watersheds of loess hilly gully area [J]. Journal of Ecology, 2011, 31(6): 1604-1616.
     [10] Luo, Z., Feng, W., Luo, Y., et al. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions [J]. Global Change Biology, 2017, 23(10): 4430-4439.