数据集(库)目录

出版期刊|区域分类

2021年第12期
2019年第02期
数据详情

基于MOD13Q1的蒙古国植被物候数据集(2001-2019)


邵亚婷王卷乐*
中国科学院地理科学与资源研究所,北京100101

DOI:10.3974/geodb.2022.03.05.V1

出版时间:2022年3月

网页浏览次数:8144       数据下载次数:161      
数据下载量:45027.89 MB      数据DOI引用次数:

关键词:

蒙古,植被物候,返青期,枯黄期,生长季长度

摘要:

蒙古国是蒙古高原的重要组成部分,是全球生态环境变化的重要响应区域。基于TIMESAT平台,运用MOD13Q1产品中的归一化植被指数(NDVI)数据,利用动态阈值法获取蒙古国植被物候参数信息,即春天NDVI值达到上升过程中NDVI变化振幅的50%时,判定植物进入返青期;秋天NDVI值下降至NDVI变化振幅的55%时,判定植物进入枯黄期。生长季长度即植被从返青期到枯黄期的天数。数据结果表明,2001-2019年,蒙古国多年平均的植被生长季长度为90-207 d。数据集内容包括2001-2019年逐年和多年平均的蒙古国植被返青期(SOS)、植被枯黄期(EOS)和植被生长季长度(LOS)的数据。数据集空间分辨率为250 m,存储为.tif格式,由60个数据文件组成,数据量为944 MB(压缩为3个文件,844 MB)。基于该数据集的研究论文发表在《地理研究》2021年40卷11期。数据论文

基金项目:

国家自然科学基金(32161143025,41971385);中国科学院(XDA2003020302)

数据引用方式:

邵亚婷, 王卷乐*. 基于MOD13Q1的蒙古国植被物候数据集(2001-2019)[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2022. https://doi.org/10.3974/geodb.2022.03.05.V1.

邵亚婷,王卷乐. 蒙古国植被物候数据集(2001–2019)研发[J]. 全球变化数据学报(中英文), 2022,6(2): 241–248.

参考文献:

[1] Wang, Z. B., Chen, J., Xing, F. F., et al. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012 [J]. Scientific Reports, 2017, 7: 6628. https://doi.org/10.1038/s41598-017-07056-4.
     [2] Wang, J. M, Xi, Z. X., He, X. J., et al. Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming [J]. Global Change Biology. 2021. DOI: 10.1111/gcb.15777.
     [3] Liu, X. G., Chen, Y. N., Li, Z., et al. Driving forces of the changes in vegetation phenology in the Qinghai-Tibet Plateau [J]. Remote Sensing. 2021, 13: 4952. https://doi.org/.10.3390/rs13234952.
     [4] Liu, H. Y., Wang, H., Li, N. et al. Phenological mismatches between above- and belowground plant responses to climate warming [J]. Nature Climate Change. 2022, 12: 97-102. https://doi.org/10.1038/s41558-021-01244-x.
     [5] Miao, L. J., Muller, D., Cui, X. F., et al. Changes in vegetation phenology on the Mongolian Plateau and their climatic determinants [J]. Plos One, 2017, 12(12): e0190313. DOI: 10.1371/journal.pone.0190313.
     [6] Dugarsuren, N., Lin, C. Investigation of vegetation dynamics of Mongolia using time series of NDVI in response to temperature and precipitation [J]. Mongolian Journal of Biological Sciences, 2011, 9(1-2): 9-17. DOI: 10.22353/mjbs.2011.09.02.
     [7] Dugarsuren, N., Lin, C. Temporal variations in phenological events of forests, grasslands and desert steppe ecosystems in Mongolia: A remote sensing approach [J]. Annals of Forest Research, 2016, 59(2): 175-190. DOI: 10.15287/afr.2016.400.
     [8] Schulz, C., Koch, R., Cierjacks, A., et al. Land change and loss of landscape diversity at the Caatinga phytogeographical domain: Analysis of pattern-process relationships with MODIS land cover products (2001-2012) [J]. Journal of Arid Environments, 2017, 136: 54-74.
     [9] Zhou, W., Gang, C., Zhou, L., et al. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China [J]. Acta Oecologica, 2014, 55(2):86-96.
     [10] Zhou, W., Gang, C., Chen, Y., et al. Grassland coverage inter-annual variation and its coupling relation with hydrothermal factors in China during 1982-2010 [J]. Journal of Geographical Sciences, 2014, 24(4):593-611.
     [11] Wu, C., Wang, X., Wang, H., et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming [J]. Nature Climate Change,2018, 8, 1092-1096. https://doi.org/10.1038/s41558-018-0346-z.
     [12] 邵亚婷, 王卷乐, 严欣荣. 蒙古国植被物候特征及其对地理要素的响应[J]. 地理研究, 2021, 40(11): 3029-3045.
     [13] Clinton, N., Yu, L., Fu, H. H., et al. Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a High Spatio-Temporal Resolution [J]. Remote Sensing, 2014, 6(8): 7320-7338.
     [14] Wang, J., Wei, H., Cheng, K., et al. Updatable dataset revealing decade changes in land cover types in Mongolia [J]. Geoscience Data Journal, 2022, 00, 1-14.DOI: 10.1002/gdj3.149.
     [15] 丛楠, 沈妙根. 1982-2009年基于卫星数据的北半球中高纬地区植被春季物候动态及其与气候的关系[J]. 应用生态学报, 2016, 27(9): 2737-2746. DOI: 10.13287/j.1001-9332.201609.028.
     [16] Zu, J. X., Zhang, Y. J., Huang, K., et al. Biological and climate factors co-regulated spatial-temporal dynamics of vegetation autumn phenology on the Tibetan Plateau [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 69: 198-205.
     [17] 付阳, 陈辉, 张斯琦等. 基于群落类型的寒区旱区物候特征及其对气候因子的响应: 以2000-2019年柴达木盆地为例[J]. 地理研究, 2021, 40(1): 52-66.
     [18] 黄文琳, 张强, 孔冬冬等.1982—2013 年内蒙古地区植被物候对干旱变化的响应[J].生态学报, 2019, 39(13) : 4953-4965.
     [19] 毕哲睿. 蒙古高原雪深时空变化及其对草地植被物候影响研究[D]. 呼和浩特: 内蒙古师范大学, 2020.
     [20] Sun, Z. G., Wang, Q. X., Xiao, Q. G., et al. Diverse responses of remotely sensed grassland phenology to interannual climate variability over frozen ground regions in Mongolia [J]. Remote Sensing, 2015, 7(1): 360-377. DOI: 10.3390/rs70100360.
     [21] 李晨昊. 蒙古高原积雪变化及对草地植被物候影响的研究[D]. 呼和浩特: 内蒙古师范大学, 2019.
     [22] 姜康. 中蒙边境草原带物候变化及其主要影响因子[D]. 呼和浩特: 内蒙古师范大学, 2020.
     [23] 姜康, 包刚, 乌兰图雅等. 2001—2017年蒙古高原不同植被返青期变化及其对气候变化的响应[J]. 生态学杂志, 2019, 38(08): 2490-2499.
     [24] 李铮, 柏延臣, 何亚倩. 遥感叶面积指数产品提取自然植被物候期对比[J]. 遥感技术与应用, 2015, 30(06): 1103-1112.
     

数据下载:

序号 数据名 数据大小 操作
0Datapaper_VPD_Mongolia_2001-2019.pdf4025.00kb下载
1 VPD_EOS_2001-2019.rar 262225.88KB
2 VPD_LOS_2001-2019.rar 332173.23KB
3 VPD_SOS_2001-2019.rar 270242.63KB
主管单位