数据集(库)目录

出版期刊|区域分类

2021年第12期
2019年第02期
数据详情

多源数据融合计算积雪覆盖数据集—以美国西北部试验区为例(2000-2020)


高杨1董怀伟1,2
1 中国科学院青藏高原研究所环境变化与地表过程重点实验室,北京1001012 山东科技大学测绘与空间信息学院,青岛266590

DOI:10.3974/geodb.2022.02.08.V1

出版时间:2022年2月

网页浏览次数:7050       数据下载次数:21      
数据下载量:8850.60 MB      数据DOI引用次数:

关键词:

积雪覆盖,多源数据,日频率,2000-2020,美国西北部

摘要:

全面准确地认识积雪动态变化,对制定积雪变化应对措施,合理的进行持续变暖下区域水资源管理,加深全球气候变化科学认识等具有重要意义。作者基于MODIS最新版本的NDSI数据、IMS雪冰数据和192个SNOTEL站点地面积雪观测数据,依据美国西北部积雪特征确定了适于该区域的NDSI积雪判识阈值,针对各数据在不同时间段的积雪判识性能制定了不同的融合规则,提出了多源数据融合算法,得到多源数据融合计算积雪覆盖数据集——以美国西北部试验区(2000-2020)为例。验证结果表明,该融合算法得到的数据较源数据精度有所改善、积雪判识综合性能得到提高。数据集内容包括:(1)试验区边界数据;(2)试验区2000-2020年每天的积雪覆盖数据(空间分辨率为500 m)。另附雪深验证点数据。数据集存储格式为.tiff、.shp、.xlsx和.txt,共由7,688个数据文件组成,数据量为170 GB(压缩为1个文件,421 MB)。数据论文

基金项目:

中华人民共和国科学技术部(2017YFA0603303);国家自然科学基金(42171136)

数据引用方式:

高杨, 董怀伟. 多源数据融合计算积雪覆盖数据集—以美国西北部试验区为例(2000-2020)[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2022. https://doi.org/10.3974/geodb.2022.02.08.V1.

高杨,董怀伟. 多源数据融合计算积雪覆盖数据集——以美国西北部试验区为例[J]. 全球变化数据学报(中英文). 2022, 6(2): 280–289.

参考文献:

[1] Brown, R., Derksen, C., Wang, L. Assessment of spring snow cover duration variability over northern Canada from satellite datasets [J]. Remote Sensing of Environment, 2007, 111: 367-381.
     [2] Armstrong, R. L., Brodzik, M. J. Recent northern hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors [J]. Geophysical Research Letters, 2001, 28(19): 3673-3676
     [3] Organization, W. M. IGOS cryosphere theme: a cryosphere theme report for the IGOS partnership [M]. World Meteorological Organization, 2007.
     [4] Abbas, F., Simon, G., Ghaleb, F., et al. Snow hydrology in Mediterranean mountain regions: A review [J]. Journal of Hydrology, 2017, 551: 374-396.
     [5] Franz, K. J., Hogue, T. S., Sorooshian, S. Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts [J]. Journal of Hydrology, 2008, 360(1-4): 48-66.
     [6] 仲桂新, 宋开山, 王宗明等. 东北地区MODIS和AMSR-E积雪产品验证及对比[J]. 冰川冻土, 2010, 32(6): 1262-1269.
     [7] 黄晓东, 张学通, 李霞等. 北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J]. 冰川冻土, 2007(5): 722-729.
     [8] 陈仁升, 康尔泗, 吴立宗等. 中国寒区分布探讨[J]. 冰川冻土, 2005(04): 469-475.
     [9] Rasouli, K., Pomeroy, J. W., Whitfield, P. H. Hydrological Responses of Headwater Basins to Monthly Perturbed Climate in the North American Cordillera [J]. Journal of Hydrometeorology, 2019, 20(5): 863-882.
     [10] 张廷军, 钟歆玥. 欧亚大陆积雪分布及其类型划分[J]. 冰川冻土, 2014, 36(3): 481-490.
     [11] Siirila-Woodburn, E. R., Rhoades, A. M., et al. A low-to-no snow future and its impacts on water resources in the western United States [J]. Nature Reviews Earth & Environment, 2021, 2: 800-819.
     [12] 黄晓东, 李旭冰, 刘畅宇等. 青藏高原积雪范围和雪深/雪水当量遥感反演研究进展及挑战[J]. 冰川冻土, 2019, 41(5): 1138-1149.
     [13] Gao, Y., Lu, N., Yao, T. D. Evaluation of a cloud-gap-filled MODIS daily snow cover product over the Pacific Northwest USA [J]. Journal of Hydrology, 2011, 404: 157-165.
     [14] Gao, Y., Xie, H. J., Lu, N., et al. Toward advanced daily cloud-free snow cover and snow water equivalent [J]. Journal of Hydrology, 2010, 385: 23-25.
     [15] Li, X. H., Jing, Y. H., Shen, H. F., et al. The recent development in cloud removal approaches of MODIS snow cover product [J]. Hydrology and Earth system Sciences, 2019, 23(5): 2401-2416.
     [16] Gao, Y., Xie, H. J., Yao, T. D., et al. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA [J]. Remote Sensing of Environment, 2010, 114: 1662-1675.
     [17] 除多, 扎西顿珠, 次丹玉珍. NOAA IMS雪冰产品在青藏高原积雪监测中的适用性分析[J]. 冰川冻土, 2021, 43(06): 1659-1672.
     [18] Mazari, N., Ahmet, E., Xie, H. J., et al. Assessment of ice mapping system and moderate resolution imaging spectroradiometer snow cover maps over Colorado Plateau [J]. Journal of Applied Remote Sensing, 2013, 7(1): 1-16.
     [19] Hall, D. K., Riggs, G. A. MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 61 [DB]. NASA National Snow and Ice Data Center Distributed Active Archive Center, 2021, https://doi.org/10.5067/MODIS/MOD10A1.061.
     [20] Hall, D. K., Riggs, G. A. MODIS/Aqua Snow Cover Daily L3 Global 500m SIN Grid, Version 61 [DB]. NASA National Snow and Ice Data Center Distributed Active Archive Center, 2021, https://doi.org/10.5067/MODIS/MYD10A1.061.
     [21] Hall, D. K., Riggs, G. A., Salomonson, V. V., et al. MODIS snow-cover products [J]. Remote Sensing of Environment, 2002, 83: 181-194.
     [22] Riggs, G. A., Hall, D. K., Román, M. MODIS snow products user guide for Collection 6(C6) [R/OL]. [2019-07-02]. https://modis-snow-ice.gsfc.nasa.gov/uploads/C6_MODIS_Snow_User_Guide.pdf.
     [23] 曾桐瑶. 青藏高原地区积雪物候对气候的响应研究[D]. 兰州: 兰州大学, 2019.
     [24] 刘洵, 金鑫, 柯长青. 中国稳定积雪区IMS雪冰产品精度评价[J]. 冰川冻土, 2014, 36(03): 500-507.
     [25] U.S. National Ice Center. IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1 [DB]. National Snow and Ice Data Center, 2008, https://doi.org/10.7265/N52R3PMC.
     [26] Zhang, H. B., Zhang, F., Zhang, G. Q., et al. Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection [J]. Science of the Total Environment, 2019, 651: 2712-2726.
     [27] USDA Natural Resources Conservation Service. Snowpack: Snow Water Equivalent (SWE) and Snow Depth [DB/OL]. https://www.nrcs.usda.gov/wps/portal/wcc/.
     

数据下载:

序号 数据名 数据大小 操作
0Datapaper_SnowCoverTest_2000-2020.pdf1677.00kb下载
1 SnowCoverTest_2000-2020.rar 431572.12KB
主管单位