数据集(库)目录

出版期刊|区域分类

2021年第12期
2019年第02期
数据详情

基于自然地理要素的全球土地宜垦性数据集


张成鹏叶瑜*方修琦
北京师范大学地理科学学部,北京100875

DOI:10.3974/geodb.2022.04.01.V1

出版时间:2022年4月

网页浏览次数:7814       数据下载次数:156      
数据下载量:554.07 MB      数据DOI引用次数:

关键词:

自然地理要素,全球,宜垦性,空间分异

摘要:

土地宜垦性是指土地适宜进行耕作的程度。作者基于0.5° x 0.5°栅格为评价单元,运用皮尔逊相关分析研究了全球陆地(除南极洲以外)范围内气候、土壤、地形等13个自然地理要素与现代垦殖率的相关性,分区遴选与现代垦殖率显著相关的自然地理要素,综合构建了全球土地宜垦性数据。数据结果表明,土地宜垦性强弱与垦殖率值大小的空间分布格局基本一致。即在全球主要农耕区(如东欧平原、中国华北平原、恒河平原、北美中部平原等)普遍表现出很高的垦殖强度,而在自然条件对垦殖而言相对恶劣的地区,宜垦性值普遍很低。该数据集空间数据分辨率为5′ x 5′。数据集由4个数据文件组成,以.img格式存储,数据量为38.7 MB(压缩为1个文件,3.55 MB)。数据论文

基金项目:

中华人民共和国科学技术部(2017YFA0603304)

数据引用方式:

张成鹏, 叶瑜*, 方修琦. 基于自然地理要素的全球土地宜垦性数据集[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2022. https://doi.org/10.3974/geodb.2022.04.01.V1.

张成鹏, 叶瑜, 方修琦. 基于自然地理要素的全球土地宜垦性数据集的研发[J]. 全球变化数据学报(中英文) , 2022, 6(3): 386-394

参考文献:

[1] Ellis, E. C., Kaplan, J. O., Fuller, D. Q., et al. Used planet: A global history [J]. Proceedings of the National Academy of Sciences, 2013, 110(20): 7978-7985.
     [2] Foley, J. O., DeFries, R., Asner, G. P., et al. Global consequences of land use [J]. Science, 2005, 309(5734): 570-574.
     [3] Gaillard, M. J. LandCover6k: Global anthropogenic land-cover change and its role in past climate [M]. PAGES Magazine, 2015, 23(1): 38-39.
     [4] Lambin, E. F., Geist, H. J. Land-use and land-cover change: Local processes and global impacts [M]. Berlin: Springer Science & Business Media, 2008.
     [5] Goldewijk, K. K., Beusen, A., Doelman, J., et al. Anthropogenic land use estimates for the Holocene–HYDE 3.2 [J]. Earth System Science Data, 2017, 9(2): 927-953.
     [6] Moran, E., Ojima, D. S., Buchmann, B., et al. Global Land Project: Science plan and implementation strategy [M]. Stockholm: IGBP Secretariat, 2005.
     [7] Ramankutty, N., Foley, J. A., Hall, F. G., et al. ISLSCP II historical croplands cover, 1700-1992 [DB/OL]. ORNL DAAC, 2010. https://daac.ornl.gov/.
     [8] Ramankutty, N., Foley, J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992 [J]. Global Biogeochemical Cycles, 1999, 13(4): 997-1027.
     [9] Pongratz, J., Reick, C., Raddatz, T., et al. A reconstruction of global agricultural areas and land cover for the last millennium [J]. Global Biogeochemical Cycles, 2008, 22(6): 1-16.
     [10] Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., et al. Holocene carbon emissions as a result of anthropogenic land cover change [J]. The Holocene, 2011, 21(5): 775-791.
     [11] Boyle, J. F., Gaillard, M. J., Kaplan, J. O., et al. Modelling prehistoric land use and carbon budgets: A critical review [J]. The Holocene, 2011, 21(5): 1-8.
     [12] Pielke, R. A., Pitman, A., Niyogi, D., et al. Land use/land cover changes and climate: Modeling analysis and observational evidence [J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(6): 828-850.
     [13] 葛全胜, 戴君虎, 何凡能等. 过去300年中国部分省区耕地资源数量变化及驱动因素分析邂[J]. 自然资源进展, 2003, 13(8): 825-832.
     [14] 林珊珊, 郑景云, 何凡能. 中国传统农区历史耕地数据网格化方法[J]. 地理学报, 2008, 61(1): 83-92.
     [15] 叶瑜, 方修琦, 任玉玉等. 东北地区过去300年耕地覆盖变化[J]. 中国科学: D辑, 2009, 39(3): 340-350.
     [16] He, F. N., Li, S. C., Zhang, X. Z., et al. Comparisons of cropland area from multiple datasets over the past 300 years in the traditional cultivated region of China [J]. Journal of Geographical Sciences, 2013, 23(6): 978-990.
     [17] Li, S. C., He, F. N., Zhang, X. Z. A spatially explicit reconstruction of cropland cover in China from 1661 to 1996 [J]. Regional Environmental Change, 2016, 16(2): 417-428.
     [18] Yang, X. H., Jin, X. B., Guo, B. B., et al. Research on reconstructing spatial distribution of historical cropland over 300 years in traditional cultivated regions of China [J]. Global and Planetary Change, 2015, 128: 90-102.
     [19] Fick, S. E., Hijmans, R. J. WorldClim2: New 1km spatial resolution climate surfaces for global land areas [J]. International Journal of Climatology, 2017, 37(12): 4302-4315.
     [20] Danielson, J. J., Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010) [M]. Washington, DC, USA: US Department of the Interior, US Geological Survey, 2011.
     [21] Pinzon, J. E., Tucker, C. J. A Non-Stationary 1981-2012 AVHRR NDVI3g Time Series [J]. Remote Sensing, 2014, 6(8): 6929-6960.
     [22] Hengl, T., Mendes, J. J., Heuvelink, G. B., et al. SoilGrids250m: Global gridded soil information based on machine learning [J]. PLoS ONE, 2017, 12: e0169748.
     [23] Zhang, C. P., Ye, Y., Fang, X. Q., et al. Synergistic modern global 1 km cropland dataset derived from multi-sets of land cover products [J]. Remote Sensing, 2019, 11(19): 1-18.
     

数据下载:

序号 数据名 数据大小 操作
0Datapaper_GlobalCultivLandSuitability.pdf3459.00kb下载
1 GlobalCultivLandSuitability.rar 3636.98KB
主管单位