References:
[1] Bai, L. L., Long, D., Yan, L. Estimation of Surface Soil Moisture With Downscaled Land Surface Temperatures Using a Data Fusion Approach for Heterogeneous Agricultural Land[J]. Water Resources Research, 2019, 55(2): 1105-1128.
     [2] Zheng, C.L., Hu, G.C., Chen, Q.T., et al. Impact of remote sensing soil moisture on the evapotranspiration estimation[J]. National Remote Sensing Bulletin, 2021, 25(04): 990-999.
     [3] Xie, Q.X., Jia, L., Chen, Q.T., et al.Evaluation of microwave remote sensing soil moisture products farming-pastoral area of Shandian river basin [J]. National Remote Sensing Bulletin, 2021, 25(04): 974-989.
     [4] Merlin, O., Escorihuela, M.J., Mayoral, M.A., et al. Self-calibrated evaporation-based disaggregation of SMOS soil moisture: An evaluation study at 3 km and 100 m resolution in Catalunya, Spain [J]. Remote Sensing of Environment, 2013, 130: 25-38.
     [5] Chan, S. K., Bindlish, R., O'Neill, P., et al. Development and assessment of the SMAP enhanced passive soil moisture product [J]. Remote Sensing of Environment, 2018, 204: 2539-2542.
     [6] Das, N. N., Entekhabi, D., Dunbar, R.S., et al. The SMAP mission combined active-passive soil moisture product at 9 km and 3 km spatial resolutions [J]. Remote Sensing of Environment, 2018, 211: 204-217.
     [7] Zribi, M., Andre, C., Decharme, B. A method for soil moisture estimation in Western Africa based on ERS Scatterometer [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2): 438-448.
     [8] Zribi, M., Gorrab, A., Baghdadi, N. A newsoil roughness parameter for themodelling of radar backscattering over bare soil [J]. Remote Sensing of Environment, 2014, 152: 62-73.
     [9] Gorrab, A., Zribi, M., Baghdadi, N., et al. Potential of X-Band TerraSAR-X and COSMO-SkyMed SAR data for the assessment of physical soil parameters [J]. Remote Sensing, 2015, 7(1): 747-766.
     [10] Gao, Q., Zribi, M., Escorihuela, M.J., et al. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution [J]. Sensors , 2017, 17(9): 1966.
     [11] Li, J., Wang, S. Using SAR-derived vegetation descriptors in a Water Cloud Model to improve soil moisture retrieval [J]. Remote Sensing, 2018, 10(9): 1370.
     [12] Bousbih, S., Zribi, M., El Hajj, M., et al. Soil moisture and irrigation mapping in a semi-arid region, based on the synergetic use of Sentinel-1 and Sentinel-2 data [J]. Remote Sensing, 2018, 10(12): 1953.
     [13] Amazirh, A., Merlin, O., Er-Raki, S., et al. Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil [J]. Remote Sensing of Environment, 2018, 211: 321-337.
     [14] Bao, Y., Lin, L., Wu, S., et al. Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 72: 76-85.
     [15] Gao, Q., Zribi, M., Escorihuela M. et al. Irrigation Mapping Using Sentinel-1 Time Series at Field Scale [J]. Remote Sensing, 2018, 10(9): 1495.
     [16] Li, J. M., Wang, J. J, Yan, Q. H. Analysis of water and soil resources balance in Panzhuang Irrigated Disrrict, Shandong Province [J]. Water Resources Development Research, 2020, 20(9): 47-50+58.
     [17] Feng, Y. Q., Li, Q. Y., Wang, H. J., et al. Analysis on the network scheme of ultrasonic water level system in Panzhuang Irrigation District, Shandong Province [J]. Ground Water, 2007, (4): 117-118.
     [18] Zhang, D. Y., Dai, Z., Xu, X.G., et al. Crop classification of modern agricultural park based on time series Sentinel-2 images [J]. Infrared and Laser Engineering, 2021, 50(5): 262-272.
     [19] Yu, F., Zhao, Y. A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation-covered areas [J]. Science China Earth Sciences, 2011, 54(12): 1955-1964.