References:
     [1] FAO. The State of World Fisheries and Aquaculture 2020 [M]. 2020.
     [2] Duan, Y., Tian, B., Li, X., et al. Tracking changes in aquaculture ponds on the China coast using 30 years of Landsat images [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102383.
     [3] Sun, Z., Luo, J., Yang, J., et al. Nation-scale mapping of coastal aquaculture ponds with Sentinel-1 SAR data using Google Earth Engine [J]. Remote Sensing, 2020, 12(18): 3086.
     [4] Wang, M., Mao, D., Xiao, X. M., et al. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021 [J]. Remote Sensing of Environment, 2023: 15.
     [5] Sridhar, P. N., Surendran, A., Ramana, I. V. Auto‐extraction technique‐based digital classification of saltpans and aquaculture plots using satellite data [J]. International Journal of Remote Sensing, 2008, 29(2): 313-323.
     [6] Ottinger, M., Clauss, K., Kuenzer, C. Aquaculture: Relevance, distribution, impacts and spatial assessments – a review [J]. Ocean & Coastal Management, 2016, 119: 244-266.
     [7] Ren, C., Wang, Z., Zhang, Y., et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016 [J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82: 101902.
     [8] Ottinger, M., Clauss, K., Kuenzer, C. Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data [J]. Remote Sensing, 2017, 9(5): 440.
     [9] Otsu, N. Threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1): 62-66.
     [10] Breiman, L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
     [11] Pearson, K. Contributions to the mathematical theory of evolution [J]. Philosophical Transactions of the Royal Society of London. A, 1894, 185: 71-110.
     [12] Liu, Y., Wang, Z., Yang, X., et al. Satellite-based monitoring and statistics for raft and cage aquaculture in China’s offshore waters [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 91: 102118.
     [13] Zhu, Z., Woodcock, C. E. Object-based cloud and cloud shadow detection in Landsat imagery [J]. Remote Sensing of Environment, 2012, 118: 83-94.
     [14] Xie, H., Luo, X., Xu, X., et al. Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction [J]. International Journal of Remote Sensing, 2016, 37(8): 1826-1844.
     [15] Guo, Q., Pu, R., Li, J., et al. A weighted normalized difference water index for water extraction using Landsat imagery [J]. International Journal of Remote Sensing, 2017, 38(19): 5430-5445.
     [16] Peng, Y., Sengupta, D., Duan, Y., et al. Accurate mapping of Chinese coastal aquaculture ponds using biophysical parameters based on Sentinel-2 time series images [J]. Marine Pollution Bulletin, 2022, 181: 113901.
     [17] Virdis, S. G. P. An object-based image analysis approach for aquaculture ponds precise mapping and monitoring: a case study of Tam Giang-Cau Hai Lagoon, Vietnam [J]. Environmental Monitoring and Assessment, 2014, 186(1): 117-133.
     [18] Diniz, C., Cortinhas, L., Pinheiro, M. L., et al. A large-scale deep-learning approach for multi-temporal aqua and salt-culture mapping [J]. Remote Sensing, 2021, 13(8): 1415.
     [19] Gross, J. W., Heumann, B. W. Can flowers provide better spectral discrimination between herbaceous wetland species than leaves? [J]. Remote Sensing Letters, 2014, 5(10): 892-901.