References:
     [1] Ma, H. T., Wei, Y. D., Dai, L., et al. The proximity and dynamics of intercity technology transfers in the Guangdong-Hong Kong-Macau Greater Bay Area: Evidence from patent transfer networks [J]. Environment and Planning A: Economy and Space, 2022, 54(7): 1432-1449.
     [2] Wang, B. J., Wang, T., Liu, C. L. Spatiotemporal dynamics of China's technology transfer hubs and their hinterworlds [J]. Acta Geographica Sinica, 2023, 78(2): 293-314.
     [3] Bednarz, M., Broekel, T. The relationship of policy induced R&D networks and inter-regional knowledge diffusion [J]. Journal of Evolutionary Economics, 2019, 29(5): 1459-1481.
     [4] Luan, X. C., Zhu, S. J., Mao, X. Y. Impact of technology transfer network on urban innovation capability from a multi-scale perspective [J]. Scientia Geographica Sinica, 2023, 43(1): 11-19.
     [5] Liu, C. L., Yan, S. S. Spatial evolution and determinants of transnational technology transfer network in China [J]. Acta Geographica Sinica, 2022, 77(2): 331-352.
     [6] Wang, J. E., Du, F. Y., Jing, Y., et al. Space-industry path of technology transfer: An empirical study of Northeast China [J]. Resources Science, 2022, 44(2): 365-374.
     [7] Liu, W., Tao, Y., Bi, K. Capturing information on global knowledge flows from patent transfers: An empirical study using USPTO patents [J]. Research Policy, 2022, 51(5): 104509.
     [8] Leech, D. P., Scott, J. T. Foreign patents for the technology transfer from laboratories of US federal agencies [J]. The Journal of Technology Transfer, 2022, 47(4): 937-978.
     [9] Ashari, P. A., Blind, K., Koch, C. Knowledge and technology transfer via publications, patents, standards: Exploring the hydrogen technological innovation system [J]. Technological Forecasting and Social Change, 2023, 187: 122201.
     [10] Zhang, J. W., Liang, C. A., Hu, Z. Y., et al. Spatiotemporal characteristics of intercity technology transfer network in the Yellow River Basin [J]. Economic Geography, 2020, 40(5): 58-69.