References:
     [1] Zhang, Y. L., Li, B. Y., Zheng, D. Datasets of the boundary and area of the Tibetan Plateau [J/DB/OL]. Digital Journal of Global Change Data Repository, 2014. https://doi.org/10.3974/geodb.2014.01.12.V1.
     [2] Yao, T. D., Chen, F. H., Cui, P., et al. From Tibetan Plateau to Third Pole and Pan-Third Pole [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931.
     [3] Cui, P., Jia, Y., Su, F. H., et al. Natural hazards in Tibetan Plateau and key issue for feature research [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 985-992.
     [4] Luo, L. F., Zhang, K. L., Kong, Y. P., et al. Temporal and spatial distribution of soil loss on Tibet-Qing Plateau [J]. Journal of Soil and Water Conservation, 2004, 18(1): 58-62.
     [5] Yang, Y. Y., Zhao, R. Y., Shi, Z., et al. Integrating multi-source data to improve water erosion mapping in Tibet, China [J]. Catena, 2018, 169: 31-45.
     [6] Teng, H. F., Liang, Z. Z., Chen, S. C., et al. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models [J]. Science of The Total Environment, 2018, 635: 673-686.
     [7] Zhang, F., Hu, Y. D., Fan, X. M., et al. Controls on seasonal erosion behavior and potential increase in sediment evacuation in the warming Tibetan Plateau [J]. Catena, 2022, 209: 105797.
     [8] Sun, J., Liu, Y., Zhou, T. C., et al. Soil conservation service on the Tibetan Plateau, 1984-2013 [J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2019, 109(3-4): 445-451.
     [9] Zhao, W. T., Cheng, Y. Z., Jian, J. S., et al. Water erosion changes on the Qinghai-Tibet Plateau and its response to climate variability and human activities during 1982-2015 [J]. Catena, 2023, 229(26): 107207.
     [10] Tian, Q. L., Zhang, X. P., He, J., et al. Potential risk of soil erosion on the Tibetan Plateau during 1990-2020: impact of climate change and human activities [J]. Ecological Indicators, 2023, 154: 110669.
     [11] Kang, L. Q., Zhou, T. C., Gan, Y. M., et al. Spatial and temporal patterns of soil erosion in the Tibetan Plateau from 1984 to 2013 [J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 245-253.
     [12] Karydas, C. G., Panagos, P., Gitas, I. Z. A classification of water erosion models according to their geospatial characteristics [J]. International Journal of Digital Earth, 2014, 7(3): 229-250.
     [13] Batista, P. V. G., Davies, J., Silva, M. L. N., et al. On the evaluation of soil erosion models: are we doing enough? [J]. Earth-Science Reviews, 2019, 197: 102898.
     [14] Zhang, Y. T., Xiao, H. B., Nie, X. D., et al. Evolution of research on soil erosion at home and abroad in the past 30 years—based on bibliometric analysis [J]. Acta Pedologica Sinica, 2020, 57(4): 797-810.
     [15] Schürz, C., Mehdi, B., Kiesel, J., et al. A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors-a case study for Kenya and Uganda [J]. Hydrology and Earth System Sciences, 2020, 24(9): 4463-4489.
     [16] Lin, J. K., Guan, Q. Y., Tian, J., et al. Assessing temporal trends of soil erosion and sediment redistribution in the Hexi Corridor region using the integrated RUSLE-TLSD model [J]. Catena, 2020, 195: 104756.
     [17] Wischmeier, W. H., Smith, D. D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning [M]. U.S. Department of Agriculture, Agriculture Handbook No. 537, 1978.
     [18] Li, S. C., Zhang, Y. L., Wang, Z. F., et al. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions [J]. Ecosystem Services, 2018, 30: 276-286.
     [19] Zhang, W. B., Xie, Y., Liu, B. Y. Rainfall erosivity estimation using daily rainfall amounts [J]. Geographical Science, 2002, 22(6): 705-711.
     [20] Xie, Y., Yin, S., Liu, B., et al. Models for estimating daily rainfall erosivity in China [J]. Journal of Hydrology, 2016, 535: 547-558.
     [21] Yin, S., Xie, Y., Liu, B., et al. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions [J]. Hydrology and Earth System Sciences, 2015, 19(10): 4113-4126.
     [22] Sharpley, A. N., Williams, J. R. EPIC-erosion/productivity impact calculator: 1. Model documentation [M]. USDA Technical Bulletin, 1990.
     [23] Torri, D., Poesen, J. W. A., Borselli, L. Predictability and uncertainty of the soil erodibility factor using a global dataset [J]. Catena, 1997, 31(1-2): 1-22.
     [24] Panagos, P., Meusburger, K., Ballabio, C., et al. Soil erodibility in Europe: a high-resolution dataset based on LUCAS [J]. Science of the Total Environment, 2014, 479-480(1): 189-200.
     [25] Moore, I. D., Burch, G. J. Physical basis of the length-slope factor in the Universal Soil Loss Equation [J]. Soil Science Society of America Journal, 1986, 50(5): 1294-1298.
     [26] Desmet, P., Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units [J]. Journal Soil and Water Conservation, 1996, 51(5): 427-433.
     [27] Böhner, J., Selige, T. Spatial prediction of soil attributes using terrain analysis and climate regionalization [OL]. In SAGA-Analyses and modelling applications. Goltze, 2006. https://mediatum.ub.tum.de/doc/1304675/file.pdf.
     [28] Panagos, P., Borrelli, P., Meusburger, K., et al. Estimating the soil erosion cover-management factor at the European scale [J]. Land Use Policy, 2015, 48: 38-50.
     [29] Majhi, A., Shaw, R., Mallick, K., et al. Towards improved USLE-based soil erosion modelling in India: a review of prevalent pitfalls and implementation of exemplar methods [J]. Earth-Science Reviews, 2021, 221: 103786.