Dataset List

Vol.|Area

Data Details

Soil Erosion Assessment Dataset of the Qinghai-Xizang Plateau Based on the RUSLE Model Analysis(1981-2018)


HUANG Yanzhang1,4XIN Zhongbao2GAO Guangyao1,4MA Ying3,4YANG Lihu3,4SONG Xianfang*3,4
1 State Key Laboratory of Regional and Urban Ecology,Research Center for Eco-Environmental Science,Chinese Academy of Science,Beijing 100085,China2 School of Soil and Water Conservation,Beijing Forestry University,Beijing 100083,China3 Key Laboratory of Water Cycle and Related Land Surface Processes,Institute of Geographic Science and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China4 College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 101408,China

DOI:10.3974/geodb.2025.06.05.V1

Published:June 2025

Visitors:227       Data Files Downloaded:0      
Data Downloaded: 无      Citations:

Key Words:

soil erosion,Qinghai-Xizang Plateau,Ensemble RUSLE model,change,soil erosion by water

Abstract:

The Qinghai-Xizang Plateau exhibits ecological fragility and high sensitivity to climate change, with soil erosion posing a significant threat to the ecological security of the Pan-Third Pole region. By integrating multiple sources data, including China Meteorological Forcing Dataset (CMFD), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), ERA-Interim precipitation data, SoilGrids soil data, and 90-m digital elevation model (DEM), we employs a composite RUSLE model based on erosion factors (9 R factors x 3 K factors x 3 LS factors x 3 C factors) to assess soil erosion across the Plateau from 1981 to 2018. The RUSLE-IC-SDR methodology was validated against measured sediment yield data, resulting in a comprehensive hydraulic erosion dataset of the Qinghai-Xizang Plateau. This dataset includes: (1) the multi-year average hydraulic erosion data (unit: t ha-1 yr-1) corresponding to the median of the integrated model from 1981 to 2018, from 1981 to 1998, and from 1999 to 2018; (2) the rate of change of hydraulic erosion (unit: t ha-1 yr-1 yr-1) from 1981 to 2018, from 1981 to 1998 and from 1999 to 2018. The dataset has a spatial resolution of 100 m, is archived in .tif format, and consists of 26 data files with data size of 12.3 GB (compressed into 6 files, 5.38 GB).

Foundation Item:

Ministry of Science and Technology of P. R. China (2019QZKK0403)

Data Citation:

HUANG Yanzhang, XIN Zhongbao, GAO Guangyao, MA Ying, YANG Lihu, SONG Xianfang*. Soil Erosion Assessment Dataset of the Qinghai-Xizang Plateau Based on the RUSLE Model Analysis(1981-2018)[J/DB/OL]. Digital Journal of Global Change Data Repository, 2025. https://doi.org/10.3974/geodb.2025.06.05.V1.

References:


     [1] Zhang, Y. L., Li, B. Y., Zheng, D. Datasets of the boundary and area of the Tibetan Plateau [J/DB/OL]. Digital Journal of Global Change Data Repository, 2014. https://doi.org/10.3974/geodb.2014.01.12.V1.
     [2] Yao, T. D., Chen, F. H., Cui, P., et al. From Tibetan Plateau to Third Pole and Pan-Third Pole [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931.
     [3] Cui, P., Jia, Y., Su, F. H., et al. Natural hazards in Tibetan Plateau and key issue for feature research [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 985-992.
     [4] Luo, L. F., Zhang, K. L., Kong, Y. P., et al. Temporal and spatial distribution of soil loss on Tibet-Qing Plateau [J]. Journal of Soil and Water Conservation, 2004, 18(1): 58-62.
     [5] Yang, Y. Y., Zhao, R. Y., Shi, Z., et al. Integrating multi-source data to improve water erosion mapping in Tibet, China [J]. Catena, 2018, 169: 31-45.
     [6] Teng, H. F., Liang, Z. Z., Chen, S. C., et al. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models [J]. Science of The Total Environment, 2018, 635: 673-686.
     [7] Zhang, F., Hu, Y. D., Fan, X. M., et al. Controls on seasonal erosion behavior and potential increase in sediment evacuation in the warming Tibetan Plateau [J]. Catena, 2022, 209: 105797.
     [8] Sun, J., Liu, Y., Zhou, T. C., et al. Soil conservation service on the Tibetan Plateau, 1984-2013 [J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2019, 109(3-4): 445-451.
     [9] Zhao, W. T., Cheng, Y. Z., Jian, J. S., et al. Water erosion changes on the Qinghai-Tibet Plateau and its response to climate variability and human activities during 1982-2015 [J]. Catena, 2023, 229(26): 107207.
     [10] Tian, Q. L., Zhang, X. P., He, J., et al. Potential risk of soil erosion on the Tibetan Plateau during 1990-2020: impact of climate change and human activities [J]. Ecological Indicators, 2023, 154: 110669.
     [11] Kang, L. Q., Zhou, T. C., Gan, Y. M., et al. Spatial and temporal patterns of soil erosion in the Tibetan Plateau from 1984 to 2013 [J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 245-253.
     [12] Karydas, C. G., Panagos, P., Gitas, I. Z. A classification of water erosion models according to their geospatial characteristics [J]. International Journal of Digital Earth, 2014, 7(3): 229-250.
     [13] Batista, P. V. G., Davies, J., Silva, M. L. N., et al. On the evaluation of soil erosion models: are we doing enough? [J]. Earth-Science Reviews, 2019, 197: 102898.
     [14] Zhang, Y. T., Xiao, H. B., Nie, X. D., et al. Evolution of research on soil erosion at home and abroad in the past 30 years—based on bibliometric analysis [J]. Acta Pedologica Sinica, 2020, 57(4): 797-810.
     [15] Schürz, C., Mehdi, B., Kiesel, J., et al. A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors-a case study for Kenya and Uganda [J]. Hydrology and Earth System Sciences, 2020, 24(9): 4463-4489.
     [16] Lin, J. K., Guan, Q. Y., Tian, J., et al. Assessing temporal trends of soil erosion and sediment redistribution in the Hexi Corridor region using the integrated RUSLE-TLSD model [J]. Catena, 2020, 195: 104756.
     [17] Wischmeier, W. H., Smith, D. D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning [M]. U.S. Department of Agriculture, Agriculture Handbook No. 537, 1978.
     [18] Li, S. C., Zhang, Y. L., Wang, Z. F., et al. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions [J]. Ecosystem Services, 2018, 30: 276-286.
     [19] Zhang, W. B., Xie, Y., Liu, B. Y. Rainfall erosivity estimation using daily rainfall amounts [J]. Geographical Science, 2002, 22(6): 705-711.
     [20] Xie, Y., Yin, S., Liu, B., et al. Models for estimating daily rainfall erosivity in China [J]. Journal of Hydrology, 2016, 535: 547-558.
     [21] Yin, S., Xie, Y., Liu, B., et al. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions [J]. Hydrology and Earth System Sciences, 2015, 19(10): 4113-4126.
     [22] Sharpley, A. N., Williams, J. R. EPIC-erosion/productivity impact calculator: 1. Model documentation [M]. USDA Technical Bulletin, 1990.
     [23] Torri, D., Poesen, J. W. A., Borselli, L. Predictability and uncertainty of the soil erodibility factor using a global dataset [J]. Catena, 1997, 31(1-2): 1-22.
     [24] Panagos, P., Meusburger, K., Ballabio, C., et al. Soil erodibility in Europe: a high-resolution dataset based on LUCAS [J]. Science of the Total Environment, 2014, 479-480(1): 189-200.
     [25] Moore, I. D., Burch, G. J. Physical basis of the length-slope factor in the Universal Soil Loss Equation [J]. Soil Science Society of America Journal, 1986, 50(5): 1294-1298.
     [26] Desmet, P., Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units [J]. Journal Soil and Water Conservation, 1996, 51(5): 427-433.
     [27] Böhner, J., Selige, T. Spatial prediction of soil attributes using terrain analysis and climate regionalization [OL]. In SAGA-Analyses and modelling applications. Goltze, 2006. https://mediatum.ub.tum.de/doc/1304675/file.pdf.
     [28] Panagos, P., Borrelli, P., Meusburger, K., et al. Estimating the soil erosion cover-management factor at the European scale [J]. Land Use Policy, 2015, 48: 38-50.
     [29] Majhi, A., Shaw, R., Mallick, K., et al. Towards improved USLE-based soil erosion modelling in India: a review of prevalent pitfalls and implementation of exemplar methods [J]. Earth-Science Reviews, 2021, 221: 103786.

Data Product:

ID Data Name Data Size Operation
1 A1981_1998_Trend.rar 1040533.57KB
2 A1981_2018_Trend.rar 1042165.87KB
3 A1999_2018_Trend.rar 1053667.97KB
4 Pre50_1981_1998_Mean.rar 740867.92KB
5 Pre50_1981_2018_Mean.rar 1026684.91KB
6 Pre50_1999_2018_Mean.rar 743213.52KB
Co-Sponsors
Superintend