Dataset List

Vol.|Area

Data Details

Simulating Precipitation Moisture Sources Dataset on Qingzang Plateau (1998-2018)


ZHANG Chi1TANG Qiuhong1HUANG Jinchuan*1,2ZHOU Yuanyuan1GAFFNEY Paul P. J.1XU Ximeng1
1 Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China2 College of Resources and Environmental Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

DOI:10.3974/geodb.2024.09.02.V1

Published:Sep. 2024

Visitors:60       Data Files Downloaded:0      
Data Downloaded: 无      Citations:

Key Words:

Qingzang Plateau,climate,precipitation,moisture resource

Abstract:

The moisture source and transport mechanism of water vapor for precipitation on the Qingzang Plateau have long been a hot topic of interest in the international hydro-climatology community. Due to the limited number of ground stations on the plateau and their extremely uneven distribution, there are large errors in overall precipitation measurements, leading to significant uncertainties in tracing the origins of precipitation. The author introduced satellite precipitation data to compensate for the limitations of station-observed precipitation, allowing for a more accurate assessment of the water vapor sources for overall plateau precipitation. Using a water vapor tracking numerical model, the author simulated the water vapor sources for overall plateau precipitation over about 20 years. The model used ERA-Interim reanalysis data, TRMM satellite precipitation, and GLDAS OAFlux evaporation as data drivers. Comparative experiments were set up for validation, ultimately generating monthly-scale data on water vapor sources for overall plateau precipitation. The dataset includes: (1) the extent of the Qingzang Plateau; (2) monthly water vapor contribution data for precipitation on the plateau from 1998 to 2018, with a spatial resolution of 1°x1°, in units of mm/month; (3) annual and monthly precipitation data for the plateau. The dataset is archived in .nc, .shp, and .xlsx formats, consisting of 8 data files with a total size of 55 MB (compressed into one file with 40.9 MB). The research findings based on this dataset have been published in the journal of Environmental Research Letters, Vol. 15, 2020.

Foundation Item:

Chinese Academy of Sciences (XDA2006040202)

Data Citation:

ZHANG Chi, TANG Qiuhong, HUANG Jinchuan*, ZHOU Yuanyuan, GAFFNEY Paul P. J., XU Ximeng. Simulating Precipitation Moisture Sources Dataset on Qingzang Plateau (1998-2018)[J/DB/OL]. Digital Journal of Global Change Data Repository, 2024. https://doi.org/10.3974/geodb.2024.09.02.V1.

References:


     [1] Zhao, Y. F., Zhu, J., Xu, Y. Establishment and assessment of the grid precipitation datasets in China for recent 50 years [J]. Journal of the Meteorological Sciences, 2014, 34: 414–420.
     [2] Zhang, Y. L., Li, B. Y., Zheng, D. Datasets of the Boundary and Area of the Tibetan Plateau [J/DB/OL]. Digital Journal of Global Change Data Repository, 2014. https://doi.org/10.3974/geodb.2014.01.12.V1.
     [3] Dee, D. P., Uppala, S. M., Simmons, A. J., et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137: 553–597.
     [4] Rodell, M., Houser, P. R., Jambor, U. E. A., et al. The global land data assimilation system [J]. Bulletin of the American Meteorological society, 2004, 85: 381–394.
     [5] Huffman, G. J., Bolvin, D. T., Nelkin, E. J., et al. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales [J]. Journal of Hydrometeorology, 2007, 8(1): 38-55.
     [6] Yu, L., Weller, R. A. Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005) [J]. Bulletin of the American Meteorological Society, 2007, 88(4): 527-540.
     [7] van der Ent, R. J., Tuinenburg, O. A., Knoche, H. R., et al. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? [J]. Hydrology and Earth System Sciences, 2013, 17: 4869–4884.
     [8] van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W., et al. Contrasting roles of interception and transpiration in the hydrological cycle–Part 2: Moisture recycling [J]. Earth System Dynamics, 2014, 5(2): 471-489.
     [9] Zhang, C., Tang, Q. H., Chen, D. L. Recent changes in the moisture source of precipitation over the Tibetan Plateau [J]. Journal of Climate, 2017, 30: 1807–1819.
     [10] Zhang, C., Tang, Q. H., Chen, D. L., et al. Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau [J]. Journal of Hydrometeorology, 2019, 20(2): 217–229.
     [11] Zhang, C. Moisture source assessment and the varying characteristics for the Tibetan Plateau precipitation using TRMM [J]. Environmental Research Letters, 2020, 15(10): 104003.
     

Data Product:

ID Data Name Data Size Operation
1 MoistureSourceQZP_1998-2018.rar 41910.09KB
Co-Sponsors
Superintend